• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Synaptic connectivity motifs contribute to memory storage and…

Bioengineer by Bioengineer
January 25, 2018
in Biology, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

In a recent research article entitled "Synaptic mechanisms of pattern completion in the hippocampal CA3 network", published on September 9, 2016, in Science, Jose Guzman, Alois Schlögl, Michael Frotscher, and Peter Jonas have investigated these mechanisms by combining functional connectivity analysis and network modeling. Their findings suggest that the rules of synaptic connectivity between CA3 pyramidal cells contribute to the remarkable efficiency of pattern completion.

Previous theories of the hippocampal formation often depicted the CA3 region as a network of highly interconnected cells. The neuroscientists at the Institute of Science and Technology Austria (IST Austria) tested this hypothesis using a technique that allows monitoring the connection between electrical signals in up to eight neurons at the same time. Using this octuple recording technique, they made several highly surprising observations. First, they found that connectivity was sparse, with an average connection probability of approximately 1%. This massively challenges the dogma of a network of highly connected cells. Even more surprisingly, they discovered that connectivity in the network is not random, but exhibits connectivity motifs that occur much more frequently than expected for a random network. Thus, the structure of the hippocampal CA3 network may be somewhat reminiscent of a "small world" architecture as found in social networks. Finally, the authors revealed that synaptic connections between two cells are mediated by only one or two synaptic contacts. This is also remarkable because much higher numbers have been found for excitatory synaptic connections in the neocortex.

What could be the functional significance of these highly specific synaptic connectivity rules, in particular in relation to pattern completion? To address this question, Peter Jonas and his team built a model of the CA3 network that incorporates many of these new experimental observations. In contrast to many previous studies, the network was implemented in full size, so that all 330,000 CA3 neurons of the rat hippocampus were simulated. This modeling approach made heavy use of the computer cluster of IST Austria, and was strongly supported by the scientific service unit "scientific computing" of the institute. The authors found that a full-size network model with realistic connectivity of 1% was indeed able to perform the network computation of pattern completion. Furthermore, they discovered that the presence of connectivity motives increased, under certain conditions, the performance of the network. Finally, the design of synaptic connections based on one or two synaptic contacts also seems useful for pattern completion, apparently because it minimizes redundancy in the flow of information in the network. Thus, both macro- (e.g. motifs) and microconnectivity (e.g. properties of connection) facilitate pattern completion in the CA3 cell network. "The results provide a nice demonstration of how the Hopfield quote "build it, and you understand it" can be successfully applied to important questions in neuroscience," says Peter Jonas, who leads the cellular neuroscience group.

###

Media Contact

Stefan Bernhardt
[email protected]
@Istaustria

http://Www.ist.ac.at

Share12Tweet7Share2ShareShareShare1

Related Posts

Delayed Childhood Blood Cancer Diagnosis in Uganda

November 12, 2025

Revolutionary Angio-CT Technology Revolutionizes Imaging for Superior Patient Care

November 12, 2025

Study Finds Greener Environments May Reduce the Link Between Air Pollution and Breast Cancer: Insights from UK Biobank Data

November 12, 2025

Graphene-Based Solar Cells Power Temperature Sensors for the First Time

November 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    209 shares
    Share 84 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    141 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1306 shares
    Share 522 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Delayed Childhood Blood Cancer Diagnosis in Uganda

Revolutionary Angio-CT Technology Revolutionizes Imaging for Superior Patient Care

Study Finds Greener Environments May Reduce the Link Between Air Pollution and Breast Cancer: Insights from UK Biobank Data

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.