• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

SwRI’s SLED-W algorithms detect crude oil on water

Bioengineer by Bioengineer
June 30, 2020
in Chemistry
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Machine vision research to expand from laboratory to field studies near oil production, distribution regions

IMAGE

Credit: Southwest Research Institute

SAN ANTONIO — June 30, 2020 — Southwest Research Institute has developed computer-based techniques to accurately detect crude oil on water using inexpensive thermal and visible cameras. This machine learning-based solution can detect and monitor oil leaks before they become major threats to lakes, rivers and coastal areas.

With over 80,000 miles of oil pipelines across the United States, many waterways are at risk for environmental damage from incidents such as the 2010 Kalamazoo Spill, which cost more than $1.2 billion and three years to clean up. Monitoring waterways near oil pipelines is costly and time consuming with conventional solutions that rely upon satellite remote sensing or laser spectroscopy.

SwRI addresses these challenges with its Smart Leak Detection on Water (SLED-W) system, which uses algorithms to process visual and thermal data from cameras affixed to aircraft, stationary devices or watercraft.

“SLED-W was able to detect two different types of oil with unique thermal and visible properties,” said Ryan McBee, a research engineer who led the project for SwRI’s Critical Systems Department. “SLED-W showed positive initial results, and with further data collection, the algorithm will handle more varied external conditions.”

The internally funded project expands on previously developed SLED technology that detects methane gas from pipelines as well as liquid leaks on solid surfaces such as soil, gravel and sand.

SwRI applied a multidisciplinary approach to develop SLED-W. Computer scientists teamed with oil and gas experts from the Institute’s Mechanical Engineering Division to train algorithms to recognize the unique characteristics of oil on water. Oil can spread over water or blend with it, making it hard for sensors to discern under different lighting and environmental conditions.

“Labeling oil is a significant challenge. For SLED-W, we had to account for different behaviors so it would know what to consider and what to ignore to avoid false-positives,” McBee said.

By combining thermal and visible cameras, SLED-W analyzes scenes from different perspectives. Visible cameras alone are limited by glare and have difficulty capturing transparent thin oils that blend with water. Thermal vision requires heat differences to discern features. This can lead to false positives near animals and other warm objects. By combining thermal and visual images into the machine learning system, algorithms can choose the most relevant information, mitigating the weaknesses of each sensor.

Next, the team will perform field testing to train the algorithms and is currently working with industry partners to equip aircraft with SLED-W to gather data in real-world conditions.

###

For more information, visit https://machinelearning.swri.org.

YouTube video for the release: https://youtu.be/NjIqHMUDsdw

Media Contact
Robert Crowe
[email protected]

Original Source

https://www.swri.org/press-release/sled-w-algorithms-machine-vision-oil-leak-detection?utm_source=EurekAlert!&utm_medium=Distribution&utm_campaign=SLED-PR

Tags: Biomedical/Environmental/Chemical EngineeringComputer ScienceEcology/EnvironmentEnergy SourcesResearch/DevelopmentRobotry/Artificial IntelligenceSoftware EngineeringTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Architecture of VBayesMM

Unraveling Gut Bacteria Mysteries Through AI

July 4, 2025
Visulaization of ATLAS collision

Can the Large Hadron Collider Prove String Theory Right?

July 3, 2025

Breakthrough in Gene Therapy: Synthetic DNA Nanoparticles Pave the Way

July 3, 2025

Real-Time Electrochemical Microfluidic Monitoring of Additive Levels in Acidic Copper Plating Solutions for Metal Interconnections

July 3, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    56 shares
    Share 22 Tweet 14
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

Cracking the Code of Cancer Drug Resistance

Peptidoglycan Links Prevent Lysis in Gram-Negative Bacteria

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.