• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

SwRI study describes first ultraviolet imaging of Sun’s middle corona

Bioengineer by Bioengineer
December 12, 2022
in Chemistry
Reading Time: 5 mins read
0
Solar Webs
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

SAN ANTONIO — Dec. 12, 2022 — A team of researchers from Southwest Research Institute (SwRI), NASA and the Max Planck Institute for Solar System Research (MPS) have discovered web-like plasma structures in the Sun’s middle corona. The researchers describe their innovative new observation method, imaging the middled corona in ultraviolet (UV) wavelength, in a new study published in Nature Astronomy. The findings could lead to a better understanding of the solar wind’s origins and its interactions with the rest of the solar system.

Since 1995, the U.S. National Oceanic and Atmospheric Administration has observed the Sun’s corona with the Large Angle and Spectrometric Coronagraph (LASCO) stationed aboard the NASA and European Space Agency Solar and Heliospheric Observatory (SOHO) spacecraft to monitor space weather that could affect the Earth. But LASCO has a gap in observations that obscures our view of the middle solar corona, where the solar wind originates.

“We’ve known since the 1950s about the outflow of the solar wind. As the solar wind evolves, it can drive space weather and affect things like power grids, satellites and astronauts,” said SwRI Principal Scientist Dr. Dan Seaton, one of the authors of the study. “The origins of the solar wind itself and its structure remain somewhat mysterious. While we have a basic understanding of processes, we haven’t had observations like these before, so we had to work with a gap in information.”

To find new ways to observe the Sun’s corona, Seaton suggested pointing a different instrument, the Solar Ultraviolet Imager (SUVI) on NOAA’s Geostationary Operational Environmental Satellites (GOES), at either side of the Sun instead of directly at it and making UV observations for a month. What Seaton and his colleagues saw were elongated, web-like plasma structures in the Sun’s middle corona. Interactions within these structures release stored magnetic energy propelling particles into space.

“No one had monitored what the Sun’s corona was doing in UV at this height for that amount of time. We had no idea if it would work or what we would see,” he said. “The results were very exciting. For the first time, we have high-quality observations that completely unite our observations of the Sun and the heliosphere as a single system.”

Seaton believes these observations could lead to more comprehensive insights and even more exciting discoveries from missions like PUNCH (Polarimeter to Unify the Corona and Heliosphere), an SwRI-led NASA mission that will image how the Sun’s outer corona becomes the solar wind.

“Now that we can image the Sun’s middle corona, we can connect what PUNCH sees back to its origins and have a more complete view of how the solar wind interacts with the rest of the solar system,” Seaton said. “Prior to these observations, very few people believed you could observe the middle corona to these distances in UV. These studies have opened up a whole new approach to observing the corona on a large scale.”

The paper “Direct observations of a complex coronal web driving highly structured slow solar wind” appears in Nature: https://www.nature.com/articles/s41550-022-01834-5

For more information, visit https://www.swri.org/heliophysics.

Solar Webs

Credit: SwRI/NOAA

SAN ANTONIO — Dec. 12, 2022 — A team of researchers from Southwest Research Institute (SwRI), NASA and the Max Planck Institute for Solar System Research (MPS) have discovered web-like plasma structures in the Sun’s middle corona. The researchers describe their innovative new observation method, imaging the middled corona in ultraviolet (UV) wavelength, in a new study published in Nature Astronomy. The findings could lead to a better understanding of the solar wind’s origins and its interactions with the rest of the solar system.

Since 1995, the U.S. National Oceanic and Atmospheric Administration has observed the Sun’s corona with the Large Angle and Spectrometric Coronagraph (LASCO) stationed aboard the NASA and European Space Agency Solar and Heliospheric Observatory (SOHO) spacecraft to monitor space weather that could affect the Earth. But LASCO has a gap in observations that obscures our view of the middle solar corona, where the solar wind originates.

“We’ve known since the 1950s about the outflow of the solar wind. As the solar wind evolves, it can drive space weather and affect things like power grids, satellites and astronauts,” said SwRI Principal Scientist Dr. Dan Seaton, one of the authors of the study. “The origins of the solar wind itself and its structure remain somewhat mysterious. While we have a basic understanding of processes, we haven’t had observations like these before, so we had to work with a gap in information.”

To find new ways to observe the Sun’s corona, Seaton suggested pointing a different instrument, the Solar Ultraviolet Imager (SUVI) on NOAA’s Geostationary Operational Environmental Satellites (GOES), at either side of the Sun instead of directly at it and making UV observations for a month. What Seaton and his colleagues saw were elongated, web-like plasma structures in the Sun’s middle corona. Interactions within these structures release stored magnetic energy propelling particles into space.

“No one had monitored what the Sun’s corona was doing in UV at this height for that amount of time. We had no idea if it would work or what we would see,” he said. “The results were very exciting. For the first time, we have high-quality observations that completely unite our observations of the Sun and the heliosphere as a single system.”

Seaton believes these observations could lead to more comprehensive insights and even more exciting discoveries from missions like PUNCH (Polarimeter to Unify the Corona and Heliosphere), an SwRI-led NASA mission that will image how the Sun’s outer corona becomes the solar wind.

“Now that we can image the Sun’s middle corona, we can connect what PUNCH sees back to its origins and have a more complete view of how the solar wind interacts with the rest of the solar system,” Seaton said. “Prior to these observations, very few people believed you could observe the middle corona to these distances in UV. These studies have opened up a whole new approach to observing the corona on a large scale.”

The paper “Direct observations of a complex coronal web driving highly structured slow solar wind” appears in Nature: https://www.nature.com/articles/s41550-022-01834-5

For more information, visit https://www.swri.org/heliophysics.



Journal

Nature Astronomy

Method of Research

Observational study

Subject of Research

Not applicable

Article Title

Direct observations of a complex coronal web driving highly structured slow solar wind

Article Publication Date

24-Nov-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

McGill Study Identifies Montreal Snow Dumps and Inactive Landfills as Significant Methane Emitters

McGill Study Identifies Montreal Snow Dumps and Inactive Landfills as Significant Methane Emitters

October 17, 2025
Recursive Enzymatic Network Enables Multitask Molecular Processing

Recursive Enzymatic Network Enables Multitask Molecular Processing

October 17, 2025

How Focus Sharpens Sound Processing: The Brain’s Path to Better Listening

October 17, 2025

Eliminating Uncertainty in Shock Wave Predictions Through Advanced Computational Modeling

October 17, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1264 shares
    Share 505 Tweet 316
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    297 shares
    Share 119 Tweet 74
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    126 shares
    Share 50 Tweet 32
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Carotenoids Linked to Respiratory Infections in America

Chelerythrine Stops Esophageal Cancer Progression via Mitophagy

High-Resolution Micro-QLEDs via Photolithography for Displays

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.