• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

SwRI markerless motion capture project optimizes baseball pitchers’ movements

Bioengineer by Bioengineer
June 6, 2023
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

SAN ANTONIO — June 6, 2023 —Southwest Research Institute is using markerless motion capture to assess the performance and injury risk of baseball pitchers. The internally funded project utilized the SwRI-developed Engine for Automatic Biomechanical Evaluation (ENABLE™) analysis tool to create a portable, user-friendly system to improve pitchers’ accuracy and alter their mechanics to reduce injury risk.

Markerless motion capture leverages computer vision algorithms to capture 3D motion data for biomechanical analysis in research, clinical and sport science applications, without the need to attach physical body markers to a human subject.

“We’re interested in how various factors can lead to excellent performance as well as lower risk of injury,” said SwRI Research Engineer Ty Templin, who led the project.

The work began with data collected by Dr. Sakiko Oyama, associate professor of kinesiology at The University of Texas at San Antonio. Oyama used ENABLE to capture the movements of more than a dozen pitchers, collecting video data, optical motion capture and ground reaction force, which is the force exerted by the ground on the body when in contact with it.

“It was clear that we could track the pitchers’ movements, but we wanted to find out if we could identify potential changes in their mechanics that would improve performance or reduce their risk of injury,” Templin said. “We ran optimization scenarios to make subtle changes to the pitchers’ motions and mechanics to minimize shoulder torque, which was our metric for injury. We then maximized the hand velocity, which was our metric for performance.”

SwRI’s markerless biomechanics system is unique in its forward dynamics optimization capability, which allows users to examine scenarios that incorporate hypothetical changes to the subject’s movements. For example, researchers found that a straightened stride leg more efficiently transfers energy into the pitch.

“We see so many potential applications for this technology,” said Institute Engineer Dr. Dan Nicolella. “In addition to optimizing how someone moves or performs in sports to reduce the risk of injury and extend their careers, we envision more general healthcare applications. For example, it could help people learn how to change their gait patterns to minimize things like the development of osteoarthritis.”

Templin, Nicolella and their colleagues plan to investigate the various benefits the system can offer and have already begun studying the movements of basketball players.

“It’s almost impossible to say, ‘If you throw like this, you’re going to get injured,’” Templin said. “What we’ve seen is that putting certain additional stresses on the body can make you more likely to get injured, but if you change movements slightly, that likelihood can be lessened. We can’t say with certainty that injury will or won’t occur, but we’re quantifying the probability.”

For more information, visit https://www.swri.org/industry/biomechanics-human-performance/engine-automatic-biomechanical-evaluation-enableTM

Metering Research Facility

Credit: Southwest Research Institute

SAN ANTONIO — June 6, 2023 —Southwest Research Institute is using markerless motion capture to assess the performance and injury risk of baseball pitchers. The internally funded project utilized the SwRI-developed Engine for Automatic Biomechanical Evaluation (ENABLE™) analysis tool to create a portable, user-friendly system to improve pitchers’ accuracy and alter their mechanics to reduce injury risk.

Markerless motion capture leverages computer vision algorithms to capture 3D motion data for biomechanical analysis in research, clinical and sport science applications, without the need to attach physical body markers to a human subject.

“We’re interested in how various factors can lead to excellent performance as well as lower risk of injury,” said SwRI Research Engineer Ty Templin, who led the project.

The work began with data collected by Dr. Sakiko Oyama, associate professor of kinesiology at The University of Texas at San Antonio. Oyama used ENABLE to capture the movements of more than a dozen pitchers, collecting video data, optical motion capture and ground reaction force, which is the force exerted by the ground on the body when in contact with it.

“It was clear that we could track the pitchers’ movements, but we wanted to find out if we could identify potential changes in their mechanics that would improve performance or reduce their risk of injury,” Templin said. “We ran optimization scenarios to make subtle changes to the pitchers’ motions and mechanics to minimize shoulder torque, which was our metric for injury. We then maximized the hand velocity, which was our metric for performance.”

SwRI’s markerless biomechanics system is unique in its forward dynamics optimization capability, which allows users to examine scenarios that incorporate hypothetical changes to the subject’s movements. For example, researchers found that a straightened stride leg more efficiently transfers energy into the pitch.

“We see so many potential applications for this technology,” said Institute Engineer Dr. Dan Nicolella. “In addition to optimizing how someone moves or performs in sports to reduce the risk of injury and extend their careers, we envision more general healthcare applications. For example, it could help people learn how to change their gait patterns to minimize things like the development of osteoarthritis.”

Templin, Nicolella and their colleagues plan to investigate the various benefits the system can offer and have already begun studying the movements of basketball players.

“It’s almost impossible to say, ‘If you throw like this, you’re going to get injured,’” Templin said. “What we’ve seen is that putting certain additional stresses on the body can make you more likely to get injured, but if you change movements slightly, that likelihood can be lessened. We can’t say with certainty that injury will or won’t occur, but we’re quantifying the probability.”

For more information, visit https://www.swri.org/industry/biomechanics-human-performance/engine-automatic-biomechanical-evaluation-enableTM



Share12Tweet8Share2ShareShareShare2

Related Posts

Mitophagy and Proteasomal Degradation Defend Postnatal Muscle Health

August 29, 2025

Transplant Policies: Undocumented Immigrants vs. Tourists

August 29, 2025

Revolutionizing Primary Care with Generative AI Solutions

August 29, 2025

Enhanced Outcomes with Revised Oocyte Warming Protocol

August 29, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mitophagy and Proteasomal Degradation Defend Postnatal Muscle Health

Transplant Policies: Undocumented Immigrants vs. Tourists

Revolutionizing Primary Care with Generative AI Solutions

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.