• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

SwRI creates innovative, efficient hydrogen compressor for FCEV refueling stations

Bioengineer by Bioengineer
March 28, 2023
in Chemistry
Reading Time: 3 mins read
0
LMRC
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

SAN ANTONIO — March 28, 2023 – A new hydrogen compressor developed at Southwest Research Institute (SwRI) can improve the efficiency and reliability of hydrogen compression used in the refueling of fuel cell electric vehicles (FCEVs). The SwRI-developed linear motor-driven reciprocating compressor (LMRC) is designed to compress hydrogen as a fuel source for FCEVs and other hydrogen-powered vehicles. Unlike most hydrogen compressors, SwRI’s LMRC is hermetically sealed and has a linear motor design that increases its efficiency and reliability.

LMRC

Credit: Southwest Research Institute

SAN ANTONIO — March 28, 2023 – A new hydrogen compressor developed at Southwest Research Institute (SwRI) can improve the efficiency and reliability of hydrogen compression used in the refueling of fuel cell electric vehicles (FCEVs). The SwRI-developed linear motor-driven reciprocating compressor (LMRC) is designed to compress hydrogen as a fuel source for FCEVs and other hydrogen-powered vehicles. Unlike most hydrogen compressors, SwRI’s LMRC is hermetically sealed and has a linear motor design that increases its efficiency and reliability.

“The LMRC was built and designed to compress hydrogen for refueling vehicles with hydrogen fuel cells,” said SwRI Principal Engineer Eugene Broerman, the project’s lead investigator. “To refuel hydrogen vehicles, the gas must be compressed to high pressures first. So, we set out to design a more efficient, leak-proof compressor.”

A key challenge for hydrogen compression is hydrogen’s small particle size, which increases the potential for leaks as the gas flows through equipment.

“Because hydrogen particles are so small, there are inherent material compatibility issues when designing a compressor,” Broerman said. “The particles are so small that they sneak in and alter materials and equipment performance. For instance, we had some early issues with the hydrogen particles causing magnets to fail, so we had to coat the magnets more effectively to prevent that.”

The novel LMRC features an airtight compressor, hermetically sealed using a combination of SwRI-developed solutions. Coatings protect magnets from hydrogen incursion and embrittlement, while improved valve designs minimize leaks. It also utilizes a ceramic piston to minimize heat expansion and lower stress on its seal.

“Typical compressors have a piston and crank mechanism that requires them to make the same motion every time, with every revolution of the motor that’s driving it. SwRI’s LMRC is linearly actuated, so we can change the linear motion profile to optimize the compression process,” Broerman said.

To avoid contaminants in the hydrogen gas, most hydrogen compressors require oil-free mechanisms. Unlike most reciprocating compressors, which have motors that move repeatedly in the same motion and require lubrication for maintenance, the LMRC’s linear motor can move the piston in a user-defined motion pattern, is mounted for vertical motion and has a unique dynamic seal design. As a result, the compressor’s seals and bearings experience less friction, negating the need for traditional lubrication. It can also be used in a range of compression applications to avoid gas leaking into the atmosphere, such as hazardous gas or flare gas recovery applications.

Originally funded by the U.S. Department of Energy and cost-shared by ACI Services, the LMRC has since been supported by internal research funding at SwRI. The LMRC was successfully run for the first time in 2020 and completed continuous operation at design conditions in mid-to-late 2022.  Going forward, Broerman plans to modify different aspects of LMRC’s design to increase efficiency and speeds to boost flow rates and to apply the LMRC to other compression applications requiring hermetic sealing.

“These types of projects are critical to advancing compression technology as the hydrogen economy continues to grow,” Broerman said.

SwRI has a multidisciplinary team dedicated to hydrogen energy research initiatives to deploy decarbonization technologies across a broad spectrum of industries.

Watch a video about the LMRC: https://youtu.be/4ECJ4zhTIMo

For more information, visit https://www.swri.org/industry/advanced-power-systems/hydrogen-energy-research and  https://www.swri.org/industries/hydrogen-powered-vehicles.

————————————————

About SwRI:
SwRI is an independent, nonprofit, applied research and development organization based in San Antonio, Texas, with more than 3,000 employees and an annual research volume of nearly $798 million. Southwest Research Institute and SwRI are registered marks in the U.S. Patent and Trademark Office. For more information, please visit https://www.swri.org.



Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Method Paves the Way for Unhindered Light Guidance

Innovative Method Paves the Way for Unhindered Light Guidance

September 10, 2025
blank

Most Precise Confirmation of Hawking’s Area Theorem from Clearest Black Hole Collision Signal Yet

September 10, 2025

Gravitational Waves Confirm Hawking and Kerr Black Hole Theories

September 10, 2025

A Decade Later: Gravitational Waves Confirm Stephen Hawking’s Black Hole Area Theorem

September 10, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    61 shares
    Share 24 Tweet 15
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalizing Treatment for Eating Disorders and Suicidality

How Dangerous Bacteria Take Over and Damage Crop Plants

Tropical Bug’s Mysterious Flag-Waving Revealed as Clever Anti-Predator Strategy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.