• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Switching off insatiable hunger

Bioengineer by Bioengineer
May 8, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In a new study researchers from the Institute for Experimental Pediatric Endocrinology of the Charité – Universitätsmedizin Berlin have successfully treat patients whose obesity is caused by a genetic defect. Aside from its beneficial effects on the patients, the researchers also provided insights into the fundamental signaling pathways regulating satiety of the new drug. The results of this research have been published in Nature Medicine*.

A mutation in the gene encoding the leptin receptor (LEPR) can cause extreme hunger starting with the first months of life. As a result, affected individuals develop extreme obesity during childhood. Increased exercise and reduced caloric intake are usually insufficient to stabilize body-weight. In many cases, obesity surgery fails to deliver any benefits, meaning that a drug-based treatment approach becomes increasingly important.

Two years ago, Dr. Peter Kühnen and the working group successfully demonstrated that treatment with a peptide, which activates the melanocortin 4 receptor (MC4R) could play a central role in the body's energy metabolism and body weight regulation. Leptin, which is also known as the satiety (or starvation) hormone, normally binds to the LEPR, triggering a series of steps that leads to the production of melanocyte-stimulating hormone (MSH). The act of MSH by binding to its receptor, the melanocortin 4 receptor (MC4R) which transduce the satiety signal to the body. However, if the LEPR is defective, the signaling cascade is interrupted. The patient's hunger remains unabated, placing them at greater risk of becoming obese. As part of this current study, researchers used a peptide that binds to the MC4R in the brain, and this activation trigger the normal satiety signal. Working in cooperation with the Clinical Research Unit at the Berlin Institute of Health (BIH), the researchers were able to record significant weight loss in patients with genetic defects affecting the LEPR.

"We also wanted to determine why the used peptide was so effective and why, in contrast to other preparations with a similar mode of action, it did not produce any severe side effects," explains Dr. Kühnen. "We were able to demonstrate that this treatment leads to the activation of a specific and important signaling pathway, whose significance had previously been underestimated." Dr. Kühnen's team is planning to conduct further research to determine whether other patients might benefit from this drug: "It is possible that other groups of patients with dysfunctions affecting the same signaling pathway might be suitable candidates for this treatment."

###

*Clément K, et al., MC4R agonism promotes durable weight loss in patients with leptin receptor deficiency, Nature Medicine (2018), doi: 10.1038/s41591-018-0015-9.

Contact:

Dr. Peter Kühnen
Institute of Experimental Pediatric Endocrinology
Charité – Universitätsmedizin Berlin
Tel: +49 30 450 666 839
Email: [email protected]

Links:

Original publication at Nature Medicine: https://www.nature.com/articles/s41591-018-0015-9

Media Contact

Dr. Peter Kühnen
[email protected]
49-304-506-66839

http://www.charite.de

https://www.charite.de/en/service/press_reports/artikel/detail/den_unstillbaren_hunger_abschalten/

Related Journal Article

http://dx.doi.org/10.1038/s41591-018-0015-9

Share13Tweet7Share2ShareShareShare1

Related Posts

Exploring Pharmaceutical Tariffs: Key Insights for Clinicians

November 17, 2025

Exploring the Microbiota’s Impact on Diet, Sleep, Fertility

November 17, 2025

Uncommon Gene Clusters: Unlocking Nature’s Hidden Products

November 17, 2025

Study Reveals Connection Between Extreme Heat and Work Disability in Older, Marginalized Workers

November 17, 2025
Please login to join discussion

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    97 shares
    Share 39 Tweet 24
  • Neurological Impacts of COVID and MIS-C in Children

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Discovering New QTLs for Wheat Quality and Yield

Exploring Pharmaceutical Tariffs: Key Insights for Clinicians

Exploring the Microbiota’s Impact on Diet, Sleep, Fertility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.