• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

SUTD develops new model of influence maximization

Bioengineer by Bioengineer
January 12, 2021
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The model will enhance the robustness of networks to adversarial attacks and will benefit both practitioners and organizations.

IMAGE

Credit: SUTD

If you were an owner of a newly set-up company, you would most likely be focused on building brand awareness to reach out to as many people as possible. But how can you do so with budget constraints?

These days, businesses have turned to a select group of people who are active on social media platforms as a cost efficient way to drive their promotional efforts. Also referred to as ‘influencers’, they have the ability to influence the opinions or buying decisions of others.

The company would then focus their efforts on influencing the influencers, hoping that, in turn, their product information gets disseminated to the largest possible number of people through these influencers’ wide social media networks.

This process, referred to as ‘influence maximization’ is well studied in social networks and computer science. Most often, one aspires to choose only a small number (let us call this k) of influencers, due to budget considerations.

The important questions to answer would then be; how do companies go about choosing these k influencers? How would they, in turn, model their behaviour? Does each of them influence their contacts independently or are their behaviours somehow linked? What are the computational implications?

Traditionally a popular model in influence maximization has been the independent cascade model wherein the assumption is that all the members in the network influence their contacts independently of others.

However, there could be hidden correlations in their behaviour which are not immediately evident.

In a study led by a team of researchers from the Singapore University of Technology and Design (SUTD), they computed the best k influencers, assuming the correlations between the way the members in the network behave is most detrimental to the company’s interest. Thus the model assumed is of adversarial nature.

The team showed that such a model has computational benefits over an independent cascade model. They also performed a comparison of the set of seed agents chosen by their model versus the set chosen by the independent cascade model.

Their research work also provided a snapshot of their results from a sample network (refer to image).

“Evaluating and enhancing the robustness of networks to adversarial attacks will be important in various domains in the future. This work provides some useful computationally tractable models which can be used by practitioners, agencies and companies in such setups,” said principal investigator Professor Karthik Natarajan from SUTD.

###

This work ‘Correlation Robust Influence Maximization’ was presented at NeurIPS 2020.

Media Contact
Jessica Sasayiah
[email protected]

Original Source

https://papers.nips.cc/paper/2020/file/4ee78d4122ef8503fe01cdad3e9ea4ee-Paper.pdf

Tags: Algorithms/ModelsComputer ScienceInternetMass MediaMathematics/StatisticsMultimedia/Networking/Interface DesignResearch/DevelopmentSystems/Chaos/Pattern Formation/ComplexityTechnology/Engineering/Computer ScienceTheory/Design
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Proteogenomic Study of Healthy vs. Cancerous Prostate Tissues Leveraging SILAC and Mutation Databases

July 31, 2025
Here’s a rewritten version of the headline for a science magazine post: “Could Desert Dust Hold the Key to Freezing Clouds?”

Here’s a rewritten version of the headline for a science magazine post: “Could Desert Dust Hold the Key to Freezing Clouds?”

July 31, 2025

Lightning strikes kill 320 million trees annually, causing significant biomass loss

July 31, 2025

Ongoing Use of Nasogastric Tubes Following Esophageal Cancer Surgery Receives Backing

July 31, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Proteogenomic Study of Healthy vs. Cancerous Prostate Tissues Leveraging SILAC and Mutation Databases

Here’s a rewritten version of the headline for a science magazine post: “Could Desert Dust Hold the Key to Freezing Clouds?”

Lightning strikes kill 320 million trees annually, causing significant biomass loss

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.