• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

SUTD develops intelligent model simulator that maps complex phenomena of memristor memory

Bioengineer by Bioengineer
September 4, 2020
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: SUTD

Memristor memory technology is set to revolutionise computers the world over as it is touted as one of the most promising candidates used for next-generation edge computing. This technology is attracting a lot of attention for replacing flash due to its implementations in high-efficient in-memory computing, machine learning and neuromorphic computation. Realising a model to predict the phenomena of memristor memory technology accurately is essential as this will allow engineers to design systems with more efficient behaviors for making a cheaper, faster memory.

Currently, a wide range of experimental and modeling studies have been reported to understand the transport process, which occurs when a current passes through the device. Several important characteristics, such as applied voltage, electric field, material constants and so on, are applied in the model simulators for predicting this process. Transport process can be analysed by various models with the help of simulation tools and advanced observation technologies.

A Singapore-led collaboration has successfully created a simulator using both electronic and thermal components to make a “transport pattern”. The team then used this hybrid platform to map a long-standing challenge in memory technology: the transport process under many conditions.

Corresponding author, Assistant Professor Desmond Loke from SUTD, said, “What we have done is take two different components of a model, memristor model, which show different behaviour from each other. When these are put them together, one can create a transport pattern that is up to 700 times more accurate than traditional models”.

Due to Joule heating, the potential temperature of the device increases and yield variations in electronic properties, such as mobility of electrons and depth of traps. These variations influence the analysis and prediction of transport behaviour of memristor memory. By considering the models of transport behaviours and assumptions related to the electron mobility and trap depth, the transport behaviours of memristor memory cells can be precisely predicted. Furthermore, the rich transport and switching behaviours can be fully accounted for by describing device characteristics obtained by an entirely new set of general current-limiting parameters.

###

This research was published in the journal AIP Advances in August. The lead author is Mr Qishen Wang and the project is led by Dr Natasa Bajalovic and Dr Desmond Loke from the Singapore University of Technology and Design (SUTD) and Dr Jer-Chyi Wang from Chang Gung University. It is supported by the Ministry of Education, Singapore, Singapore University of Technology and Design and Chang Gung university.

Media Contact
Melissa Koh
[email protected]

Related Journal Article

http://dx.doi.org/10.1063/5.0019266

Tags: Computer ScienceSoftware EngineeringTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

What “And” vs. “Then” Reveal About Hospital Visits: Insights from Online Reviews

What “And” vs. “Then” Reveal About Hospital Visits: Insights from Online Reviews

August 1, 2025
Newborn Brain Development: Plateau vs. Plain Insights

Newborn Brain Development: Plateau vs. Plain Insights

August 1, 2025

COVID-19’s Effect on Diagnoses in German Refugee Centers

August 1, 2025

Mayo Clinic Researchers Discover “Sugar Coating” Technique to Shield Cells from Type 1 Diabetes Damage

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Sustainability Accelerator Chooses 41 Promising Projects Poised for Rapid Scale-Up

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

What “And” vs. “Then” Reveal About Hospital Visits: Insights from Online Reviews

Newborn Brain Development: Plateau vs. Plain Insights

COVID-19’s Effect on Diagnoses in German Refugee Centers

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.