• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Sustainable battery production in Europe

Bioengineer by Bioengineer
March 5, 2019
in Science
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Within the Si-DRIVE European Research Project, KIT, HIU, and partners will develop innovative solutions — their goal is to establish a European lithium-ion battery production

IMAGE

Credit: Photo: Amadeus Bramsiepe, KIT

Scientists of the Helmholtz Institute Ulm (HIU) founded by Karlsruhe Institute of Technology (KIT) and their European cooperation partners are developing a sustainable cell concept that is exclusively based on ecologically and economically uncritical materials. Within the Si-DRIVE project, the consortium analyzes the complete value-added chain of a battery and plans to establish European production by 2030. The project is funded by the European Union (EU) with EUR 8 million. The project duration is four years.

Presently, about 90 percent of the lithium-ion cells are produced in Asia. Various efforts are being undertaken to establish battery production in Europe. Si-DRIVE is aimed at developing a cell that consists of a nanostructured silicon anode, a novel solid electrolyte based on ionic liquids, and a completely cobalt-free, but lithium-rich cathode. A cell of this type and a comprehensive recycling program might enable sustainable battery production.

“Our program is special, as we cover all steps of the value-added chain of a battery, from materials development to prototype cell fabrication to recycling,” says Professor Stefano Passerini, Director of HIU. Within the project, his team will develop the novel, cobalt-free cathode material using uncritical elements, such as iron or aluminum. Cobalt is listed as a critical resource by the European Commission, as it is scarce and difficult to access geopolitically, which may cause supply shortages. Moreover, cobalt extraction in the Democratic Republic of the Congo – one of the main cobalt-exporting countries in the world – sometimes involves child labor and work under inhumane conditions. “In order to enhance energy density, we want to significantly increase the lithium content in the layered oxide cathode compared to conventional materials,” Passerini adds.

Five project partners will draft a circular economy concept to identify further applications. One of the scenarios is to combine aged batteries of electric cars and reuse them as stationary storage systems. Sustainability also plays an important role for the anode and electrolyte concept. Eventually, a recycling rate above fifty percent is to be achieved. The nanostructures of the anode are designed to ensure long cycle stability thanks to an ideal geometry with high mass loads. Modeling serves to optimize the anode structure. Volume expansion and mechanical deformation are to be buffered in the best possible way, while maximum energy density is to be maintained. The newly developed solid electrolyte is based on ionic liquids that increase stability at high voltages, enhance safety, and ensure low flammability.

The project funded under the Horizon 2020 European Framework Program for Research and Innovation pools activities of 17 scientific and industry partners from eight countries. With the groups of Professor Arnulf Latz from the German Aerospace Center (DLR) and of Dr. Margret Wohlfahrt-Mehrens from the Baden-Württemberg Center for Solar Energy and Hydrogen Research (ZSW), two other partners of HIU are involved.

###

About the Helmholtz Institute Ulm (HIU)

The HIU was established in January 2011 by Karlsruhe Institute of Technology (KIT), member of the Helmholtz Association, in cooperation with Ulm University. With the German Aerospace Center (DLR) and the Center for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW), two other renowned institutions are involved in the HIU as associated partners. The international team of about 120 scientists at HIU works on the development of future energy storage systems for stationary and mobile use.

Find more on HIU at: http://www.hiu-batteries.de/en/

More about the KIT Energy Center: http://www.energy.kit.edu

Press contact:

Dr. Martin Heidelberger

Press Officer

Phone: +49 721 608-21169

Email: [email protected]

Being “The Research University in the Helmholtz Association”, KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility and information. For this, about 9,300 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 25,100 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life.

This press release is available on the internet at http://www.sek.kit.edu/english/press_office.php.

Media Contact
Monika Landgraf
[email protected]

Original Source

https://www.kit.edu/kit/english/pi_2019_029_sustainable-battery-production-in-europe.php

Tags: Biomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesEnergy Sources
Share13Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    72 shares
    Share 29 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Stability and Refolding of Zika Virus EDIII Protein

Assessing Demirjian Method Reliability Among Forensic Experts

Malaria Rapid Test Accuracy in Young Burkina Faso Children

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.