• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

‘Survival gene’ stops strains of TB mutating into deadly ‘superbugs’

Bioengineer by Bioengineer
January 27, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists have discovered a key 'survival gene' that prevents strains of tuberculosis (TB) from mutating into drug-resistant 'superbugs'.

In a joint study, published today, Friday January 27th 2017, in the journal Nature Communications, scientists from the Centro Nacional de Biotecnología in Madrid and the University of Sussex in Brighton, report the discovery of a gene called NucS that dramatically reduces mutation rates in mycobacteria — the infectious microbe which causes tuberculosis (TB).

TB, which is spread from person to person through the air, is one of the top 10 causes of death worldwide with 1.8 million people dying from the disease last year. Drug-resistant strains of TB have already been identified in 105 countries and the researchers involved in this study believe that the identification of a key gene, required to supress mutation rates in mycobacteria, is an important step towards understanding how 'superbugs' develop.

Using a genetic screen, which involved individually knocking out nearly every gene (11,000 genes) in mycobacteria, and screening whether mutant strains grew on a specific antibiotic (rifampicin), the scientists discovered that a DNA repair enzyme, produced by the NucS gene, dramatically reduces mutations from occurring.

The researchers also discovered that genetic variations in the NucS gene significantly influence the mutation rates in clinically isolated strains of mycobacteria. More work needs to be done, but the scientists believe this discovery could also play a role in understanding the development of antibiotic-resistance in patients already suffering from TB.

Professor Aidan Doherty, from the University of Sussex, said: "The rise of antibiotic resistance is a major threat to global health and, if we are to limit its impact on infectious diseases, we first need to identify the mechanisms that prevent bacteria from mutating in the first place. This knowledge will then enable us to better understand how pathogens develop into 'superbugs'.

"Incredibly, for many years it was believed that mycobacteria lacked any mutation avoidance genes. Therefore, the discovery that the NucS gene reduces the rate at which mutations occur in these pathogens is a crucial first step towards identifying the genetic factors that influence the onset of antibiotic-resistance. This will enable scientists and clinicians to screen for strains that are most likely to develop drug-resistance and figure out strategies to tackle this serious threat."

Professor Jesus Blázquez, from the Centro Nacional de Biotecnología, said: "Not only does this study identify that mutations can be reversed in mycobacteria, it reveals that the loss of this DNA repair process can cause a huge increase in the mutation rates, significantly increasing the likelihood of these pathogens acquiring mutations – which can cause antibiotic resistance.

"Now we know that that NucS dramatically reduces mutation rates in mycobacteria — it is vital that we take advantage of this and work towards exploiting this discovery to help doctors and microbiologists to predict and prevent the development of antibiotic resistance during treatments."

###

Professor Doherty's Laboratory, at the University of Sussex, has recently been awarded a large grant from the Biotechnology and Biological Sciences Research Council to work, in collaboration with the Blázquez group in Madrid, to further uncover how NucS prevents potentially lethal mutations from arising in mycobacteria.

The study published in Nature Communications is entitled, "A non-canonical mismatch repair pathway in prokaryotes".

Communications and External Affairs | University of Sussex T +44 (0)1273 678888 | [email protected]?http://www.sussex.ac.uk/newsandevents

Notes to Editors:

The University of Sussex's School of Life Sciences is one of the largest academic schools at the University. With 96 per cent of its research rated as world leading, internationally excellent or internationally recognised (REF 2014), it is among the leading research hubs for the biological sciences in the UK. The School is home to a number of prestigious research centres including the Genome Damage and Stability Centre and the Sussex Drug Discovery Centre, where academics work with industry to translate scientific advances into real-world benefits for patients.

Media Contact

Lynsey Ford
[email protected]
01-273-678-888
@sussexunipress

http://www.sussex.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Multisystem Inflammatory Syndrome: SARS-CoV-2-Triggered Kawasaki Disease

October 27, 2025
Beyond Electronics: Utilizing Light to Accelerate Computing Technology

Beyond Electronics: Utilizing Light to Accelerate Computing Technology

October 27, 2025

Probiotics Alleviate Ovarian Toxicity in Endotoxemic Mice

October 27, 2025

Burnout Causes in Family Medicine and Nursing Residents

October 27, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1286 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    197 shares
    Share 79 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Multisystem Inflammatory Syndrome: SARS-CoV-2-Triggered Kawasaki Disease

Beyond Electronics: Utilizing Light to Accelerate Computing Technology

Probiotics Alleviate Ovarian Toxicity in Endotoxemic Mice

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.