• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Surveying sea floor animals for offshore renewable energy

Bioengineer by Bioengineer
July 6, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CORVALLIS, Ore. – There is growing interest in developing offshore wind and wave energy facilities in the Pacific Northwest. But not much is known about the sediment and animal life along the sea floor in the region.

That presents a problem for renewable energy companies because they need to consider environmental implications before constructing facilities in the ocean.

A team of Oregon State University researchers has helped address that problem by using a 500-pound device with jaws to grab squares of sediment from the ocean floor at eight sites off the coasts of northern California, Oregon and southern Washington.

In a just-published paper, they outline research that found relationships between sediment characteristics and animal life (mostly pencil-eraser-sized clams and worms) were consistent across the sites they sampled.

That's significant because it could allow renewable energy companies to reduce collections of marine animal life to characterize a potential development site. That type of analysis is costly and time intensive because it involves identification work by humans.

Instead, companies could primarily conduct sediment analysis, most of which can be automated. Once the sediment analysis is done it could be cross-referenced with the findings of the Oregon State team to predict the marine animals likely to be found at a site and potentially determine impacts.

The research, led by Sarah Henkel, a marine biologist at Oregon State's Hatfield Martine Science Center, involved collecting sediment from 137 spots ranging in depth from about 160 to 360 feet, depths currently targeted for wave energy development.

The spots clustered around eight locations, from two to 10 miles off the coast of Eureka, California, six Oregon locations (Bandon, Siltcoos, Reedsport, Cape Perpetua, Newport, Nehalem) and Grays Bank, Washington.

In the Pacific Northwest, there has been recent interest in energy development off the coast of the several coastal Oregon areas, including Reedsport/Coos Bay, Newport and Tillamook, Henkel said.

Although recent plans to build a wind farm off the coast of Coos Bay fell through, Henkel currently is conducting similar collections and analyses at the depths targeted for offshore wind development in anticipation of future wind projects off Oregon.

Offshore renewable energy development is still in its infancy in the United States, with the first offshore wind project recently completed in Rhode Island. European countries have a longer history of offshore renewable energy development.

The just-published paper, "Small proportions of silt linked to distinct and predictable differences in marine macrofaunal assemblages on the continental shelf of the Pacific Northwest," was published in the journal Continental Shelf Research. Kristin Politano, who formerly worked in Henkel's lab, is a co-author.

###

The research was funded U.S. Bureau of Ocean Energy Management and the Oregon Wave Energy Trust.

Media Contact

Sarah Henkel
541-867-0316
@oregonstatenews

http://www.orst.edu

http://bit.ly/2uuWd2c

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Honey Bee Gene Expression Altered by Electric Fields

September 7, 2025
Porcine Placenta Peptide Boosts Hair Health: Studies

Porcine Placenta Peptide Boosts Hair Health: Studies

September 7, 2025

Debunking Myths: Animal Encounters with Big Cats, Crocs

September 6, 2025

Mitochondrial Genomes of Prototheca: Insights and Comparisons

September 6, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    55 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How Role Identity Affects Nurse Practitioners’ Cultural Competence

Parental KMO Genotype Influences Offspring Behavior Differently by Sex

Systemic Immune-Inflammation Index Predicts Heart Failure Risks

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.