• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Surprising spin behavior at room temperature

Bioengineer by Bioengineer
February 8, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Tokyo Institute of Technology

The field of spintronics focuses on spin transport behavior in magnetic metals, and the major findings in this area have important implications for the field of electronics. This is because conventional electronics primarily considers the electron charge, whereas spintronics allows the electron spin to be exploited. One of the most significant advancements in spintronics has been the introduction of spin degrees of freedom to semiconductors, which are essential components of modern electronic and photonic applications. However, most experiments investigating spin manipulation in semiconductors have been performed under high magnetic fields and at cryogenic temperatures.

Recently, Nozomi Nishizawa and Hiro Munekata and colleagues, from the Institute of Innovative Research, Tokyo Institute of Technology, examined the behavior of spin-polarized light-emitting diodes (LEDs) at room temperature and without an external magnetic field. Hence, they achieved the unexpected result of almost purely circularly polarized (CP) electroluminescence (EL).

The LEDs used in the study contained an epitaxial double heterostructure (sandwich-like structure) of AlGaAs/GaAs/AlGaAs, a crystalline AlOx tunnel barrier (for electrical stability during operation), and a polycrystalline Fe in-plane spin injector. During operation, spins of a given type were injected into the device. Spin relaxation then caused these spins to disperse and adopt other orthogonal orientations. Radiative recombination subsequently occurred, which was observed in the form of a linearly polarized emission.

Experiments on the LED chips showed that a higher current density generated an increase in the emission intensity. Nishizawa and coworkers also noted that the difference between the left- and right-handed EL components increased with the current density. Specifically, the intensity of the left-handed minority component decreased with increased current density, whereas that of the right-handed majority component increased linearly. Therefore, when the current density was sufficiently high (~ 100 A/scm), almost pure CP was achieved. Investigating this behavior in more detail, the researchers found that p-type doping in the active layer allowed the CP observation, which arose from spin-dependent nonlinear processes occurring at a sufficiently high current density.

In the future, higher current densities will be applied in order to elucidate the mechanism behind these nonlinear processes and to investigate the possibility of stimulated CP emission in other geometries. Other important avenues of investigation also exist, e.g., potential spin-LED applications in secure optical communications, cancer diagnosis, and optically enhanced nuclei imaging.

###

Media Contact

Emiko Kawaguchi
[email protected]
81-357-342-975

http://www.titech.ac.jp/english/index.html

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Neural Circuitry Driving Autonomic Dysreflexia Unveiled

Neural Circuitry Driving Autonomic Dysreflexia Unveiled

September 17, 2025
UMass Amherst Researcher Awarded $1.12M NSF Grant to Investigate Water Governance Effects on Child Health Across Five Nations

UMass Amherst Researcher Awarded $1.12M NSF Grant to Investigate Water Governance Effects on Child Health Across Five Nations

September 17, 2025

Widely Available, Affordable Medication Reduces Colorectal Cancer Recurrence Risk by Half

September 17, 2025

Study Reveals Resistance Training Enhances Nerve Health and Slows Aging Process

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Neural Circuitry Driving Autonomic Dysreflexia Unveiled

UMass Amherst Researcher Awarded $1.12M NSF Grant to Investigate Water Governance Effects on Child Health Across Five Nations

Widely Available, Affordable Medication Reduces Colorectal Cancer Recurrence Risk by Half

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.