• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Surprise! Ammonia emitted from fertilized paddy fields mostly doesn’t end up in the air

Bioengineer by Bioengineer
March 20, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Jianlin Shen


Livestock production and nitrogen fertilizer used in croplands emit lots of ammonia, which is the most abundant alkaline gas in ambient air. In recent years, Chinese scientists have suggested reducing ammonia emissions as an effective measure to alleviate aerosol pollution because ammonia can react with acidic gases to form aerosols and pollution.

“Ammonia is also reactive and sticky, and can be removed from the atmosphere quickly. We call this process dry deposition,” explains Dr Jianlin Shen, from the Institute of Subtropical Agriculture, Chinese Academy of Sciences. “Agricultural sources contribute to most of the ammonia emissions, but whether all the ammonia emitted from agriculture enters the atmosphere needs to be urgently evaluated.” This was the motivation behind a study conducted by Dr Shen and colleagues, recently published study in Atmospheric and Oceanic Science Letters.

The ammonia emissions intensity is relatively high in the subtropical hilly regions of China. The pattern of distribution of croplands or animal farms accompanying the surrounding natural ecosystems in this region may result in a large proportion of the emitted ammonia being deposited in the neighborhood of the sources before entering the atmosphere. Thus, it is important to determine the fate of the emitted ammonia in these subtropical hilly regions of China.

“Paddy fields constitute a major type of cropland in the subtropical hilly regions of China. We developed a method to measure the ammonia dry deposition around ammonia emission sources, and used it to measure the ammonia concentrations and dry deposition within 100 m around paddy fields (0.6 ha) with double rice cropping in the subtropical hilly area of southern China,” says Dr Shen.

Based on this study, it was found that there were high ammonia concentrations at downwind sites within 100 m from the paddy fields, which occurred during the 15 days after nitrogen fertilizer application. With an increase in distance from the paddy fields, the atmospheric ammonia concentration at the downwind sites decreased exponentially. Ammonia deposition within 100 m downwind of the paddy fields accounted for about 80% of the ammonia emitted from the paddy fields, and thus only about 20% of the emitted ammonia entered into the atmosphere to form aerosols.

“Our study indicates that ammonia deposition in the neighborhood of sources can largely reduce the amount of emitted ammonia entering the atmosphere, and thus can reduce atmospheric ammonia pollution. This mechanism should be considered in inventory compilations in order to objectively assess the potential impact of agricultural ammonia emissions on air pollution. Measures to increase the level of ammonia deposition around sources, such as by planting trees, are advocated to reduce the amount of ammonia pollution,” concludes Dr Shen.

“This study is only a case study. In the future, we intend to study the dry deposition of ammonia around sources with different emission intensities to assess the fate of ammonia when it is emitted from these sources,” adds Shen.

###

Media Contact
Ms. Zheng Lin
[email protected]
86-108-299-5053

Original Source

http://159.226.119.58/aosl/EN/news/news34.shtml

Related Journal Article

http://dx.doi.org/10.1080/16742834.2020.1738208

Tags: AgricultureAtmospheric ScienceChemistry/Physics/Materials SciencesEarth SciencePollution/Remediation
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientists Unveil Novel Method to Manipulate Mechanical Vibrations in Metamaterials

October 13, 2025
Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

October 12, 2025

Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

October 10, 2025

Wirth Named Fellow of the American Physical Society

October 10, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1234 shares
    Share 493 Tweet 308
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Optimizing Patient-Centered Care in Primary Care Settings

Link Between Early Screen Time and Child Behavior

Stopping smoking later in life associated with reduced cognitive decline, study finds

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.