• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Supramolecular protein fishing with molecular baits

Bioengineer by Bioengineer
March 2, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: IBS

Scientists from the Center for Self-assembly and Complexity (CSC) successfully isolated a cancer-prone protein by fishing out the proteins using 'molecular bait'. Cancer, according to the American Cancer Society, affects 1 in 2 men and 1 in 3 women, with prostate and breast cancer the most common types afflicting adults. Histone deacetylases (HDACs) are an important family of proteins that regulate gene expression; an altered expression or mutations of genes that encode HDACs can induce tumors to develop. Therefore HDACs are among the most promising therapeutic targets for cancer treatment and they have inspired researchers to study and develop HDAC inhibitors. Inhibition of proteins involved in disease is an important strategy in the development of a drug. For example, an anti-cancer drug (SAHA) slows down cancer progression by inhibiting HDAC, which causes the cells to stop reproducing.

CSC researchers used SAHA as a molecular bait to capture HDAC and successfully fished out the caught proteins using a bead previously developed at the Center. "In 2011, our research group developed a replacement for the existing streptavidin-biotin binding pair, which was used for the separation and purification of proteins, by taking advantage of a strong artificial host-guest interaction pair based on supramolecular chemistry, which was used to capture cell surface proteins with high purification efficiency. The goal of this study was to purify histone deacetylase, a protein that plays a biologically important role in cells and is closely related to disease mechanisms such as cancer," explains Dr. James Murray, the first author of the paper and a researcher from CSC.

The bead is made from Cucurbit[7]urils [CB[7]], a family of pumpkin-shaped macrocycles. These molecules have received a lot of attention because their high-affinity host-guest chemistry provides a unique opportunity to develop non-covalent materials for a range of applications. According to the team's manuscript, published in the German journal, Angewandte Chemie: "The CB[7]-based enrichment strategy takes advantage of small molecules with exceptionally high binding affinity. In contrast, recombinant methods use larger molecules with lower binding affinity." The IBS team extended this technology to the more complex and function-rich intracellular proteome. Inside the lab researchers labeled a protein of interest with a high-affinity guest for their bead and extracted it from cell lysate using CB[7] beads. The CB[7] beads enriched guest-labeled HDACs from a cell lysate, the team also reported that the method may be useful for enriching proteins labeled from live cells. "We used a drug molecule (SAHA) as the molecular bait that finds HDAC proteins," reveals Dr. Murray. "Our molecule also has a functional group capable of forming a permanent bond with the captured protein when irradiated with ultraviolet light. As a result, it was possible to successfully purify the histone deacetylase from a complex sample."

The team's manuscript went on to clarify, "We demonstrated that affinity-labeled intracellular proteins can be enriched from cell lysates by use of a strong host-guest pair. Notably, this method only uses designed, synthetic molecules to perform the labeling and enrichment, rather than using molecules from nature that have inherent biological background reactivity. The molecular bait strategy is one protein labeling method, we believe that the CB[7] system may be compatible with others too. Furthermore, the CB[7]-system may be used in tandem with conventional Bt-SA enrichments for deep proteome mining. Work along this line is underway in our laboratory."

###

Media Contact

Dahee Carol Kim
[email protected]
82-428-788-133
@IBS_media

http://www.ibs.re.kr/en/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Health Behavior Patterns in Chinese Women Aged 40+

October 11, 2025
Measuring AI: The Power of Algorithmic Generalization

Measuring AI: The Power of Algorithmic Generalization

October 11, 2025

Innovations in Hereditary Angioedema Treatment: Present & Future

October 11, 2025

Amino Acids and Microbiota: Key to Ulcerative Colitis Healing

October 11, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1209 shares
    Share 483 Tweet 302
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    97 shares
    Share 39 Tweet 24
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    87 shares
    Share 35 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Health Behavior Patterns in Chinese Women Aged 40+

Measuring AI: The Power of Algorithmic Generalization

Innovations in Hereditary Angioedema Treatment: Present & Future

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.