• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Suppressing meta-holographic artifacts by laser coherence tuning

Bioengineer by Bioengineer
May 26, 2021
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Yaniv Eliezer, Geyang Qu, Wenhong Yang, Yujie Wang, Hasan Yilmaz,
Shumin Xiao, Qinghai Song and Hui Cao

Metasurface holograms (meta-holograms) are ultra-thin artificial surfaces designed to shape incident light and project it to extremely wide angles. Meta-holograms have opened up numerous possibilities such as light multiplexing, information processing, 3D display, high-density data storage, and optical encoding. Despite of these remarkable advances, the road to practical applications of meta-holograms is hindered by artifacts that originate from strong interactions between the building blocks of the meta-holographic surface and inevitable fabrication defects, ultimately causing distortion and degradation to the holographic image. The small dimensions of the meta-hologram, together with the random nature of fabrication defects, make the artifacts problem extremely difficult to correct.

In a new paper published in Light Science & Application, a team of scientists, led by Hui Cao from Yale University, USA, Qinghai Song and Shumin Xiao from Harbin Institute of Technology (Shenzhen), China, and co-workers have developed an efficient method to suppress the holographic artifacts while maintaining the image quality. Their method is based on fine-tuning of the coherence of illumination, implemented with a degenerate cavity laser, a unique class of lasers which allows a precise and continuous tuning of the spatial coherence of emission with little change in total power and temporal coherence.

The majority of lasers operates with a single or a few spatial modes, and produces highly coherent emission. When the laser light is used to illuminate a meta-hologram, the interference of scattered waves produce coherent artifacts and severely distort the images. The scientists gradually decrease the coherence of laser illumination to amend the holographic artifacts. However, if the coherence is too low, the fine details of the holographic image will blur. Thus it is essential to find the optimal degree of coherence to suppress artifacts without a significant loss of spatial resolution. This was realized with a novel laser source whose spatial coherence of emission can be tuned gradually, accurately and efficiently.

The scientists summarize the operational principle of their novel technique:

“We design a bright laser source with a precise and continuous tuning of the spatial coherence. The tuning is remarkably energy efficient with low power variation. The laser is then used to illuminate a meta-hologram. The precise tuning allows reaching the right level of coherence required to suppress the coherent artifacts without significant blurring of the holographic image.”

“Compared to the existing methods of lowering the coherence of conventional lasers, our degenerate cavity laser exhibits extremely fast decoherence, thus enabling high-speed artifact-free meta-holography with no pre- or post-processing of any kind.” they added.

“The new method can be used to dramatically enhance the image quality of compact, dynamical holographic projection displays. This breakthrough will open a new venue for future applications of meta-holograms in augmented reality, optical storage, beam multiplexing, nonlinear holography and optical manipulation.” the scientists forecast.

###

Media Contact
Hui Cao
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-021-00547-0

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Researchers at Columbia Highlight the Importance of Chemistry in Quantum Materials

Researchers at Columbia Highlight the Importance of Chemistry in Quantum Materials

August 7, 2025
blank

Immobilized Reactors Revolutionize Sterically Hindered Peptide Synthesis

August 7, 2025

Scientists Develop Technique to Halt Ultrafast Silicon Melting with Precision Laser Pulses

August 7, 2025

Breakthrough in Green Chemistry: Efficient Low-Temperature Oxidation Makes Processes Cleaner, Cooler, and More Affordable

August 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    76 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

IL22RA1 Expression Predicts Colon Cancer Progression

Microglia Control Prenatal GABAergic Neurogenesis via IGF1

Multi-Omics Uncovers T-Cell Exhaustion and Galectin-9 Target

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.