• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, January 18, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Superoxide produces hydroxyl radicals that break down dissolved organic matter in water

Bioengineer by Bioengineer
April 29, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Luca Carena/The University of Torino

According to a study published in Water Research in April 2020, superoxide produces hydroxyl radicals in lake water. Hydroxyl radicals break down poorly biodegradable organic matter such as humic substances and anthropogenic pollutants.

In the aquatic environment, microbes, light and reduced compounds produce superoxide. Superoxide is a reactive oxygen species but relatively unreactive against organic compounds in water despite the prefix ‘super’ in its name.

Superoxide however can initiate a pathway of redox reactions. It can reduce ferric iron to ferrous one or be reduced itself to hydrogen peroxide. The Fenton reaction between ferrous iron and hydrogen peroxide produces hydroxyl radicals, very effective oxidants of organic matter. According the above mentioned reaction pathway, the production of one hydroxyl radical requires three superoxide ions.

“Superoxide is ubiquitously produced in lake water and thus a potential source of hydroxyl radicals.” says Dr. Anssi Vähätalo from University of Jyväskylä, “We tested the reactivity of superoxide with the ferric iron complexed with dissolved organic matter.”

A recent work published on Water Research shows that the introduction of superoxide triggered the formation of hydroxyl radical in lake water. A big surprise was that the amount of hydroxyl radicals produced was 24-times larger than expected from the introduced amount of superoxide. The hydroxyl radicals reacted with dissolved organic matter and broke it down extensively. These reactions likely regenerated superoxide and were responsible for the autocatalytic production of hydroxyl radicals.

“Superoxide has a hidden superpower, as it can initiate autocatalytic production of hydroxyl radicals in lake water. Hydroxyl radicals are the nature’s own cleansing agent that can remove persistent natural and anthropogenic organic matter from the environment. Superoxide earns its prefix “super” when it produces hydroxyl radicals in an autocatalytic manner”, Vähätalo concludes.

Recent studies have shown that nearly all microbes produce extracellular superoxide. Because microbes are ubiquitous so is superoxide too. In surface waters, iron is associated with dissolved organic matter and can catalyze production of hydroxyl radicals from superoxide. Superoxide-driven production of hydroxyl radicals is likely an important part of self-cleaning mechanisms that breaks down refractory organic matters in lakes.

The extreme reactivity of hydroxyl radicals is beneficial in the advance oxidation techniques that aim for the breakdown of anthropogenic pollutants.

“In our study, the produced amount of hydroxyl radical was several times larger than the amount of superoxide introduced into the solution of iron associated with humic substances. This type of autocatalysis of hydroxyl radicals from superoxide is naturally a high desirable property in advance oxidation techniques and worth of further studies”, Vähätalo explains.

###

Link to the article:

https://www.sciencedirect.com/science/article/abs/pii/S0043135420303195?via%3Dihub

Additional information:

Anssi Vähätalo, the University of Jyväskylä, [email protected], +358 40 805 4744

Yihua Xiao, the University of Jyväskylä, [email protected]

Luca Carena, the University of Torino, [email protected]

Media Contact
Anssi Vähätalo
[email protected]

Original Source

https://www.jyu.fi/en/current/archive/2020/04/superoxide-produces-hydroxyl-radicals-that-break-down-dissolved-organic-matter-in-lake-water

Related Journal Article

http://dx.doi.org/10.1016/j.watres.2020.115782

Tags: BiochemistryChemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Creating Synthetic Protein-Binding DNA Systems in Cells

January 17, 2026
blank

Chiral Catalysis Powers Rotary Molecular Motors

January 16, 2026

Selective GlcNAc to GalNAc Epimerization via Kinetic Control

January 15, 2026

Thermal [2+2] Cycloaddition Builds Gem-Difluoro Bicycloalkanes

January 13, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    148 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    78 shares
    Share 31 Tweet 20
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Buprenorphine Access Through Library Telehealth

3D-Printed X-Ray Shield Targets Tumors in Mice

Enhancing Young Adult Mental Health Care in Sweden

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.