• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Superconductivity from buckled-honeycomb-vacancy ordering

Bioengineer by Bioengineer
March 22, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

Crystals inherently possess imperfections. Vacancies, as the simplest form of point defects, significantly alter the optical, thermal, and electrical properties of materials. Well-known examples include colour centres in many gemstones, the nitrogen-vacancy centre in diamond, vacancy migration in solid-state batteries, and the metal-insulator transition in phase-change materials. The vacancies in these cases are in frame-works with no or weak interactions. However, the role of vacancies in strongly correlated materials is thus far unclear due to the lack of an ideal prototype.

Strongly correlated vacancy ordering has long been anticipated to harbour exotic physics, such as superconductivity. The K-Fe-Se superconductor has been a hot research subject in recent studies for an important reason, viz., the existence of an insulating iron-vacancy-ordering phase. However, this vacancy-ordering phase has been proven to coexist with the superconducting phase at the nanoscale, and is not responsible for the superconductivity. Whether correlated vacancies could become a new type of superconducting parent phase is an unanswered question. Iridates, with comparable and competing energy scales of the on-site Coulomb repulsion, crystal field and spin-orbit coupling, are a platform of rich structures and physical properties.

Recently, a joint research team from Yanpeng Qi group from ShaihaiTech University and Hosono group at the Tokyo Institute of Technology, discover an unprecedented vacancy state in Ir16Sb18, forming an extended buckled-honeycomb-vacancy (BHV) ordering. Superconductivity emerges by suppressing the BHV ordering through squeezing of extra Ir atoms into the vacancies or isovalent Rh substitution. The phase diagram reveals the superconductivity competes with the BHV ordering, which ranks it as the first superconducting parent phase with correlated vacancies. Further theoretical calculations suggest that this ordering originates from a synergistic effect of the vacancy-formation energy and Fermi surface nesting with a wave vector of (1/3, 1/3, 0). The buckled structure breaks the crystal inversion symmetry and can mostly suppress the density of states near the Fermi level. This study suggests that the ordered vacancy can be a new degree of freedom for the manipulation and study of quantum materials. Further investigation of how the vacancy intertwines with other conventional degrees of freedom like lattice, spin and orbital, and their influence towards the properties of the materials will be fascinating and hold promise for novel discoveries in physics.

###

This work was supported by National Key R&D Program of China (Grant No. 2018YFA0704300), National Natural Science Foundation of China (Grant No. U1932217, 11974246 and 11888101) and Natural Science Foundation of Shanghai (Grant No.19ZR1477300).

See the article:

Yanpeng Qi, Tianping Ying, Xianxin Wu, Zhuoya Dong, Masato Sasase, Qing Zhang, Weiyan Liu, Masaki Ichihara, Yanhang Ma, Jiangping Hu, Hideo Hosono. Superconductivity from buckled-honeycomb-vacancy ordering, Science Bulletin, 2021, 66(4):327-331.

https://www.sciencedirect.com/science/article/pii/S2095927320307301

Media Contact
Yanpeng Qi
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.scib.2020.12.007

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Estimating Rice Canopy LAI Non-Destructively Across Varieties

How SARS-CoV-2 Spike Protein Activates TLR4

Boosting Xanthan Gum Production with Essential Oil By-products

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.