• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Subtle steric differences reveal a model for Ni cross-coupling success

Bioengineer by Bioengineer
March 27, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new strategy for ligand design may enable challenging metal-catalyzed cross couplings reactions that are indispensable to drug development, according to a study published in Nature Chemistry. Based on subtle differences between ligand parameters, Princeton researchers have developed a predictive model for the success of a novel Ni-catalyzed cross-coupling reaction.

The widespread adoption of Pd-catalyzed cross-couplings, which has been recognized with the Nobel Prize, has been driven in large part by the extensive development of ligands, supporting molecules attached to the Pd center. Chemists have attempted to use these same ligands for cross-couplings promoted by Pd's cheaper sibling Ni with limited results.

Now, scientists in the Doyle lab have discovered a class of ligands capable of accessing new reactivity for Ni. These ligands, called phosphines, enabled the coupling of acetals with aryl boroxines to form valuable structures in medicinal chemistry known as benzylic ethers.

Given the molecules' unique framework, the team set out to parameterize the ligands' size and electronic properties, which can affect yield by crowding or pushing molecules off the metal center to accelerate bond forming reactions.

The researchers were surprised to find that two ligand size parameters, cone angle and buried volume, that are typically equated in the literature had distinct and pronounced effects on the reaction. "It's the first time we saw this divergence between those parameters," said corresponding author Abigail Doyle, an associate professor of chemistry at Princeton University.

Cone angle measures the angle swept by an imaginary cone that enclosing the attached ligand group, while buried volume is the percent volume of a sphere occupied by a ligand. Buried volume is the newer measurement and useful for ligands like N-heterocyclic carbenes for which cone angle can't be calculated.

Put simply, cone angle works well for measuring distant ligands while buried volume is good for ligands that are nearby, said Kevin Wu, a graduate student in the Doyle lab and first author on the paper.

Wu tested the Ni-catalyzed reaction with more than a dozen phosphine ligands. Using the resultant reaction yields and calculated size parameters, he developed a ligand parameter regression model to correlate predicted yields to measured yields.

They found higher reaction yields for ligands with remote steric hindrance, that is molecules with bulky groups positioned far from the metal center. Their finding could help explain why ligands designed for Pd aren't as effective on the smaller Ni atom, which has shorter metal-phosphine bond lengths.

Using their model, the team calculated the yield for three ligands and found that two of their predictions came close to the actual reaction yield. They also demonstrated good to high yields for a range of benzylic ether forming cross-couplings.

In the future, the researchers hope to improve methods for calculating parameters which currently assumes the lowest energy conformations of ligands instead of their dynamic reality. They also want to further apply models to tease out correlations between ligand parameters and the activity of elementary steps in the catalytic mechanism.

"It was really satisfying that parameterization let us confirm our hypothesis about the ligands," Wu said.

###

Read the full story here:

Wu, K.; Doyle, A. G. "Parameterization of phosphine ligands demonstrates enhancement of nickel catalysis via remote steric effects." Nature Chem. Published online March 6, 2017. This work was supported by the National Institutes of Health National Institute of General Medical Sciences (R01 GM100985).

Media Contact

Tien Nguyen
[email protected]
609-258-6523
@Princeton

http://www.princeton.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Revolutionizing Cancer Treatment: The Role of Nanomaterials and the Tumor Microenvironment

September 17, 2025

New Insights into Immunotherapy Failure Offer New Hope for Cancer Patients

September 17, 2025

Parents’ Perspectives on Neonatal Transfer Process

September 17, 2025

Room-Temperature Rechargeable All-Solid-State Hydride Battery

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Cancer Treatment: The Role of Nanomaterials and the Tumor Microenvironment

New Insights into Immunotherapy Failure Offer New Hope for Cancer Patients

Parents’ Perspectives on Neonatal Transfer Process

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.