• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Studying plasma physics in exploding stars — NSF CAREER award

Bioengineer by Bioengineer
March 25, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Virginia Tech

Assistant Professor Bhuvana Srinivasan of the Kevin T. Crofton Department of Aerospace and Ocean Engineering has been selected for a National Science Foundation Faculty Early Career Development (CAREER) program award to study plasma physics in exploding stars.

Plasmas are considered the fourth state of matter, achieved when a gas is heated enough to break apart into ions and electrons.

With the $600,000 CAREER award, Srinivasan will take a first-principles kinetic approach rather than using the commonly applied fluid models to better understand astrophysical phenomena associated with explosions that occur upon the death of large stars. Unlike a fluid approach, a kinetic approach considers the motion of individual particles in gases and plasmas to explain such properties as pressure, temperature, viscosity, and thermal conductivity.

A better understanding of plasma transport, or the exchange of mass, momentum and energy, can impact a variety of areas in science and engineering. The importance of Srinivasan’s research extends beyond astrophysics to terrestrial applications of plasmas, such as nuclear fusion, which has the potential to provide an abundance of clean energy. Novel numerical tools that will be developed as part of this study will be broadly applicable to fundamental science, national security, energy, and spacecraft engineering.

For the past thousand years, observations and documentation have been made about supernovae explosions. Researchers have tried to replicate the conditions and dynamics in laboratory settings. Numerical simulations are critical to further scientific advancement in this area because observations and experiments are severely limited in diagnostic ability and access.

Numerical models in such plasma regimes are also limited, having been unable to fully reproduce the results from experiments and observations. Large amount of computational resources are needed to perform a full scale simulation in order to effectively capture all the relevant spatial and temporal scales in an experiment. Reduced fluid models have traditionally been used in these regimes because they are more accessible computationally, but they have required tunable parameters, which do not have a strong physics basis.

For decades, simulations of astrophysical and laboratory plasmas have relied on simplified fluid models, which have fallen short of accurately capturing physics effects. Srinivasan’s work will seek to address this research shortfall in regards to existing discrepancies between numerical simulations and real world measurements using a novel approach to performing first-principles high-dimensional kinetic calculations.

The missing physics data can notably impact plasma transport, accurate models that are necessary to understand how instabilities develop, how turbulence evolves, and how plasma properties change. Srinivasan’s study will address whether the inconsistencies between experiments and fluid models could be explained using kinetic physics.

By increasing the fidelity of physics models and determining the missing gaps, the research has the potential to significantly advance our understanding of plasma transport with implications in a number of research areas in basic and applied plasma science.

As an educational component of the project, Srinivasan will work through an online user experience to increase the overall understanding of the science of plasma physics in K-12 school children throughout southwestern Virginia. The education and outreach activities will also encourage women and underrepresented groups to pursue science, technology, engineering, and mathematics careers through collaborations with the Center for the Enhancement of Engineering Diversity at Virginia Tech and minority-serving community colleges in Virginia.

###

Media Contact
Lindsey Haugh
[email protected]

Original Source

https://vtnews.vt.edu/articles/2019/03/news-03082019-srinivasan-nsfcareer.html

Tags: AstrophysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesMolecular PhysicsNuclear PhysicsParticle Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Innovative Protective Coating for Spacecraft in Development by Engineers

October 20, 2025
blank

Scientists Uncover Life’s Building Blocks in Ice Surrounding a Forming Star in Nearby Galaxy

October 20, 2025

Copper-Catalyzed Asymmetric Cross-Coupling with Reactive Radicals

October 20, 2025

The Quantum Doorway Puzzle: Electrons Struggling to Find Their Exit

October 20, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1268 shares
    Share 506 Tweet 317
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    301 shares
    Share 120 Tweet 75
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    129 shares
    Share 52 Tweet 32
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    118 shares
    Share 47 Tweet 30

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Modeling Wound Healing Through Strain-Induced MSC Differentiation

Ammonium Molybdate Hydrogel Boosts Photoenergy Harvesting

Unlocking Your Microbiome: The Key to Lifelong Health

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.