• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Study unveils novel crosstalk mechanism between mitochondrial…

Bioengineer by Bioengineer
January 24, 2018
in Biology, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Protein is the fundamental substance of life. The genetic code directing protein synthesis is stored in DNA. When a cell is instructed, the code information transfers from DNA to mRNA. Then, information on mRNA is further transferred to protein.

There are two sets of protein translation systems in mammalian cells – the cytoplasmic translation system and the mitochondrial translation system – both of which are composed of ribosome, tRNAs and translation factors. The translation system translates mRNA into biologically competent protein according to the information on mRNA. However, the coordination mechanism between the cytoplasmic translation system and the mitochondrial translation system has been a mystery.

A research article entitled "Mammalian Elongation Factor 4 Regulates Mitochondrial Translation Essential for Spermatogenesis" was published online in the journal Nature Structural & Molecular Biology on April 11, 2016. It describes the crosstalk mechanism between mitochondrial translation and cytoplasmic translation.

Mitochondrial translation elongation factor 4 (mtEF4) is a quality control factor in protein translation. Although protein is highly conserved in evolution, previous mtEF4 gene knockouts in some model organisms did not show significant phenotypic change.

In this study, by using a systemic mtEF4 gene knockout mouse model, researchers found that mtEF4 knockout damages the oxidative phosphorylation function in germ cells of male mice, thus causing male sterility.

Further study found that the rate of mitochondrial protein translation increased after mtEF4 was knocked out. However, the price was a lower "qualified rate" for protein and a shorter protein half-life. In order to keep step with the "quickened" mitochondrial translation, somatic cells activated the mTOR signaling pathway in order to accelerate cytoplasmic translation and balance mitochondrial translation. In this way, somatic cells successfully resolved the negative impact of high-speed mitochondrial translation.

In contrast, the mTOR signaling pathway could not be activated in germ line cells, because the mitochondrial complex assembly of germ cells failed to assemble, and the sperm maturation process stagnated at the round sperm stage, ultimately resulting in male sterility.

This study reveals a new information exchange mechanism within the cell (see figure below): The mTOR signaling pathway balances the dynamic between mitochondrial translation and cytoplasmic translation. When the mitochondrial translation rate increases, the mTOR signaling pathway is activated, which causes the increase in the cytoplasmic protein translation rate to counteract pressure from the increased mitochondrial translation, thus representing a new evolutionary adaptation mechanism. In addition, this study revealed a new reason for male infertility and is of great value for the clinical treatment of male infertility.

This research involved cooperation by many institutions, including the Institute of Biophysics (IBP), the Institute of Zoology, the Academy of Military Medical Sciences, the Tianjin University of Science and Technology, and other institutes. The Institute of Biophysics and the University of the Chinese Academy of Sciences are the first and the second institutions, respectively. Prof. QIN Yan (IBP) is the corresponding author. GAO Yanyan and BAI Xiufeng are the co-first authors of this paper. This work was also supported by the Chinese Ministry of Science and Technology, the National Natural Science Foundation and Key Projects of the Chinese Academy of Sciences.

###

Media Contact

Qin Yan
[email protected]

http://english.cas.cn/

Share12Tweet7Share2ShareShareShare1

Related Posts

Health Capital’s Role in Enhancing Primary Care Access

November 17, 2025

Maternal Aggression and Adolescent Video Addiction Links

November 17, 2025

Sleep Quality’s Impact on Smartphone Addiction and Academics

November 17, 2025

Vision Impairment Increases Malnutrition Risk in Seniors

November 17, 2025
Please login to join discussion

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    115 shares
    Share 46 Tweet 29
  • Neurological Impacts of COVID and MIS-C in Children

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Health Capital’s Role in Enhancing Primary Care Access

Maternal Aggression and Adolescent Video Addiction Links

Sleep Quality’s Impact on Smartphone Addiction and Academics

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.