• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, February 8, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Study uncovers an additional strategy for targeting treatment-resistant prostate cancer

Bioengineer by Bioengineer
May 2, 2017
in Science News
Reading Time: 1 min read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Prostate cancer cells depend on signaling through the androgen receptor (AR) to grow and survive. Many anti-cancer therapies that target ARs are initially successful in patients, including a class of drugs known as CYP17A1 inhibitors, which interfere with AR signaling by blocking the synthesis of androgen. However, over time, adaptations to AR expression and function lead to treatment resistance and disease relapse.

Recently, the observation that a CYP17A1 inhibitor, seviteronel, effectively treated a patient's prostate cancer without actually lowering androgen levels led researchers at Duke University to further investigate the drug's therapeutic activity. In a study published this week in the JCI, a team led by Donald McDonnell found that many CYP17A1 inhibitors also function as competitive AR antagonists, indicating a more complex and potentially more effective role for the drug in treating prostate cancer. The researchers then demonstrated CYP17A1 inhibitors that act at AR receptors can inhibit the growth of prostate tumor cells expressing a treatment-resistant AR mutation.

These findings provide insights into a mechanism that may lead to the development of more effective therapies for treatment-resistant prostate cancer.

###

TITLE: Androgen receptor antagonism drives cytochrome P450 17A1 inhibitor efficacy in prostate cancer

AUTHOR CONTACT:

Donald McDonnell
Duke University
[email protected]

View this article at: http://www.jci.org/articles/view/87328?key=dc2fad146edcecada5ba

Media Contact

Elyse Dankoski
[email protected]
@jclinicalinvest

http://www.jci.org

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Group Therapy Boosts Recovery in Elderly Depression

February 8, 2026

Evaluating Biosimilar Trastuzumab for Breast Cancer in Thailand

February 8, 2026

Decoding Phantom Limb Movements via Intraneural Signals

February 8, 2026

Attitudes Toward Aging Impact Early Nursing Home Quality

February 8, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13
  • Mapping Tertiary Lymphoid Structures for Kidney Cancer Biomarkers

    50 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Group Therapy Boosts Recovery in Elderly Depression

Evaluating Biosimilar Trastuzumab for Breast Cancer in Thailand

Decoding Phantom Limb Movements via Intraneural Signals

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 74 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.