• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Study splits incurable childhood brain tumors into 10 new diseases

Bioengineer by Bioengineer
September 28, 2017
in Biology
Reading Time: 6 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists have found that deadly childhood brain tumours are actually 10 different diseases that should each be diagnosed and treated based on their specific genetic faults.

The major new study has important implications for treatment, since personalising care for each type of brain tumour is likely to be much more effective than grouping them all together as one.

A team at The Institute of Cancer Research, London, found stark differences among children's 'high grade' brain tumours, or gliomas, and that they could be split into at least 10 different cancers.

Some types should be far more treatable than others using drugs under development or already on the market.

The study, published today (Thursday) in Cancer Cell, is the world's largest of these aggressive childhood brain cancers and should lead to more accurate diagnostic tests to ensure each child receives the best possible treatment.

Many of the children had mutations in their tumours that can be targeted by existing drugs approved for adult cancers, demonstrating the benefit of testing children for genetic mutations in their tumours at the point of diagnosis.

The research was funded by The Institute of Cancer Research (ICR) itself along with many different charitable funders – Cancer Research UK, CRIS Cancer Foundation, Abbie's Army, The Lyla Nsouli Foundation, Christopher's Smile and the INSTINCT network funded by The Brain Tumour Charity, Great Ormond Street Hospital Children's Charity and Children with Cancer UK.

Researchers gathered genetic data from 910 cases from 20 previously published analyses and 157 new cases, from children or young adults up to the age of 30 with high-grade glioblastoma or diffuse intrinsic pontine glioma (DIPG).

Although rare, these are the biggest cause of cancer-related death in people under 19 years of age because survival rates are so poor – children with these tumours are only expected to live an average of 9-15 months.

It is therefore vital to find out more about their biology, what makes them so deadly, and how they might be treated.

The tumours could be split into different subtypes based on different characteristics, such as age at diagnosis, area of the brain, the number of genetic mutations and – crucially – errors in key genes that drive the disease.

One of the striking findings from the study was that while some children's tumours were driven by a single genetic error in which two genes were fused together, others had tens of thousands of genetic errors – among the highest number of mutations in any human cancer.

Tumours with mutations in a gene called BRAF were found to be much less aggressive than some of the other cancers, and actually shouldn't be classified as 'high grade' at all. These tumours could be susceptible to several adult cancer drugs that target BRAF mutations.

Scientists at the ICR, a research institute and charity, found mutations in common cancer genes such as PDGFRA, KIT, MYCN, EGFR, CDK6, and genes involved in DNA repair – all of which can be targeted by existing drugs.

They also uncovered numerous new potential therapeutic targets within each subtype, such as the gene TOP3A – a gene involved in DNA replication – in tumours with a specific type of histone mutation called H3.3K27M.

Three of the subtypes were distinguished by the presence or absence of different mutations in genes that produce histones – proteins that DNA is wrapped around to pack it tightly into cells. Histones are also involved in turning off and on certain genes – a role that can be very important in cancer.

Although there are currently no drugs that can target histone mutations, there are some in development and the presence or absence of these mutations gave clues about how aggressive the cancer is, and could point to future approaches to treatment.

The data produced by this study is now considered the definitive dataset on these cancers, and will be made available on a public data portal so the research community can use it to develop new tests and treatments.

Study leader Professor Chris Jones, Professor of Childhood Brain Tumour Biology at The Institute of Cancer Research, London, said:

"Our study uncovered a wealth of new information about children's brain cancers. We found that tumours that have historically been lumped together under one diagnosis are in fact comprised of many, remarkably different, diseases.

"Treating cancer based only on what we see down the microscope simply isn't good enough any more. We need to start thinking about these as completely different cancers and diagnosing and treating them based on their genetic faults. It's exciting that several types look like they could be clearly treatable using either existing drugs on the market or other treatments under development.

"We worked with colleagues across the world to gather enough data on these rare cancers to understand better what makes them so aggressive, and what mutations occur that might make them susceptible to different treatments."

Professor Paul Workman, Chief Executive of The Institute of Cancer Research, London, said:

"A diagnosis with one of these high-grade brain tumours in children is devastating for families. We desperately needed to understand the biology of the diseases better if we are ever to find ways of treating them effectively. This important study is a vital step forward.

"We really need to get much better at making modern, targeted cancer treatments available for children, which means improving access to genetic testing and changing regulations so more drugs get tested in paediatric clinical trials."

Jo Williams lost her son Lucas after he was diagnosed with a brain tumour in May 2015. Jo and her husband Andrew set up the charity Lucas' Legacy in their son's name, to fund research into, and raise awareness of, childhood brain tumours. Jo said:

"We lost Lucas, our beautiful only child, in August 2015 following a short battle with a brain tumour. Before this Lucas had never been ill, or had a day off school. After a roller coaster of desperate hope and extreme despair, Lucas died at home – 11 weeks and one day after first becoming ill, and just four weeks away from his seventh birthday.

"After Lucas died, we were so sad to find out how little is invested in developing treatments for children with brain cancer. The standard treatment regimes that children receive for high-grade brain tumours are brutal, and Lucas went through so much. He fought so hard, but he deserved so much more, to have better treatments in his brave and courageous fight against this devastating illness.

"Professor Jones and his team are working hard to understand children's brain tumours better and to develop personalised treatments for children like Lucas, kinder treatments that will give them a better chance of survival.

"We are still so shocked that this happened to our seemingly healthy six-year-old boy. Lucas was a really kind, funny, clever, sporty boy and the centre of our world. We know that he would have grown up to be something really special. We know that he would have changed the world for the better. We still hope he will."

###

For more information, or to speak to Professor Jones or Jo Williams, please contact Claire Hastings in the ICR press office on 020 7153 5380 or [email protected]. For enquiries out of hours, please call 07595 963 613.

Notes to editors

The Institute of Cancer Research, London, is one of the world's most influential cancer research organisations.

Scientists and clinicians at The Institute of Cancer Research (ICR) are working every day to make a real impact on cancer patients' lives. Through its unique partnership with The Royal Marsden NHS Foundation Trust and 'bench-to-bedside' approach, the ICR is able to create and deliver results in a way that other institutions cannot. Together the two organisations are rated in the top four centres for cancer research and treatment globally.

The ICR has an outstanding record of achievement dating back more than 100 years. It provided the first convincing evidence that DNA damage is the basic cause of cancer, laying the foundation for the now universally accepted idea that cancer is a genetic disease. Today it is a world leader at identifying cancer-related genes and discovering new targeted drugs for personalised cancer treatment.

A college of the University of London, the ICR is the UK's top-ranked academic institution for research quality, and provides postgraduate higher education of international distinction. It has charitable status and relies on support from partner organisations, charities and the general public.

The ICR's mission is to make the discoveries that defeat cancer. For more information visit http://www.icr.ac.uk

Media Contact

Claire Hastings
[email protected]
020-715-35380
@ICR_London

http://www.icr.ac.uk

http://dx.doi.org/10.1016/j.ccell.2017.08.017

Share12Tweet7Share2ShareShareShare1

Related Posts

Phylogenomics Merges Mameliella and Maliponia into Antarctobacter

Phylogenomics Merges Mameliella and Maliponia into Antarctobacter

November 2, 2025
Overcoming Batch Effects in Single-Cell RNA-seq Datasets

Overcoming Batch Effects in Single-Cell RNA-seq Datasets

November 2, 2025

Unraveling CpG Island Methylation Through Read Bias Analysis

November 2, 2025

Unraveling Resistance Genes in Photorhabdus Bacteria

November 2, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Upward Bullying in China’s Nurse Managers

Quantum Network Entanglement Verified Without Measurement Devices

Exploring Non-Cavity Modes in Micropillar Bragg Microcavities

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.