• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Study shows how 1.5°C temperature rise can cause significant changes in coastal species

Bioengineer by Bioengineer
November 1, 2021
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A temperature increase of around 1.5°C – just under the maximum target agreed at the COP23 Paris meeting in 2017 – can have a marked impact on algae and animal species living on UK coastlines, new research has found.

Coastal temperature rises

Credit: University of Plymouth

A temperature increase of around 1.5°C – just under the maximum target agreed at the COP23 Paris meeting in 2017 – can have a marked impact on algae and animal species living on UK coastlines, new research has found.

The study, by ecologists at the University of Plymouth, examined how increases in rock surface temperature were affecting the quantity and behaviour of species commonly found on the shorelines of Devon and Cornwall.

It focused on two sites on the region’s north coast (at Bude and Croyde) and two on the south coast (Bantham and South Milton Sands), all of which have deep gullies with both north-facing and south-facing surfaces.

Their findings showed the average annual temperature on the south-facing surfaces at low tide was 1.6°C higher than those facing north and that temperature extremes (i.e. > 30°C) were six-fold more frequent on south-facing aspects.

Across the four sites, these differences had a significant effect on species abundance with 45 different species found on north-facing sites during the summer of 2018 compared to 30 on south-facing ones.

In winter, the figures were 42 and 24 respectively, while some species – including the red seaweed Plumaria plumosa and sea cauliflower (Leathesia marina) – were restricted to north-facing surfaces.

The different temperatures also had an impact on species’ breeding patterns with five times more dog whelk (Nucella lapillus) eggs found on north-facing surfaces than south-facing ones.

And while limpet reproduction generally occurred earlier on south-facing surfaces, these key grazers also exhibited greater levels of stress.

The research, published in Marine Environmental Research, is the first to explore the association between temperature and site geography on species abundance, physiology and reproductive behaviour in coastal areas.

Its authors say it provides evidence of how temperature variation at local scales can affect species while also offering an insight as to how future changes in global temperatures might have a negative impact over the coming decades.

The research was led by Dr Axelle Amstutz as part of her PhD, working alongside Associate Professor of Marine Ecology Dr Louise Firth, Professor of Marine Zoology John Spicer, and Associate Professor in Plant-Animal Interactions Dr Mick Hanley.

Dr Hanley, the study’s senior author, said: “We have all heard for some time about the importance of limiting average global temperature increases to 1.5°C, and it will undoubtedly be one of the key topics discussed at the forthcoming COP26 conference. This study shows the impact even that kind of increase could have on important species that contribute to the health and biodiversity of our planet. As such, it does add to overwhelming evidence of the threats posed by human-induced climate change.

“However, more than that, it shows how the pressure on different species can change even within individual locations. For example, we recorded a temperature of 42.5°C on a south-facing surface at Croyde at the same time as 22.5°C was measured on the opposite north-facing side. We believe this shows such sites can be used as a ‘natural laboratory’ to inform and predict how species and habitats might respond to climate change over the coming decades.”



Journal

Marine Environmental Research

DOI

10.1016/j.marenvres.2021.105482

Method of Research

Observational study

Subject of Research

Not applicable

Article Title

Facing up to climate change: Community composition varies with aspect and surface temperature in the rocky intertidal

Article Publication Date

20-Sep-2021

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

CircCOG5 Regulates Ferroptosis in Ovarian Cancer

August 27, 2025
blank

Heat Stress Impact on Aged Hens’ Health and Performance

August 27, 2025

Achieving Weight Goals Within Four Years: A Scientific Breakthrough

August 27, 2025

Exploring Fungal Diversity via Metabarcoding Techniques

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Broadband Photon-Counting Dual-Comb Spectroscopy Achieves Attowatt Sensitivity

Factors Influencing Seizure Control in Pediatric Epilepsy

High-Performance MoS2/rGO Nanocomposite for Oxygen Evolution

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.