• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Study sheds light on how ovarian cancer spreads

Bioengineer by Bioengineer
June 27, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UC Riverside

RIVERSIDE, Calif. — With 20,000 diagnoses each year, ovarian cancer is the ninth most common cancer and fifth leading cause of cancer death among women in the United States. So many women die from ovarian cancer because it often goes undetected until it has spread within the pelvis and abdomen, by which point it is difficult to treat and usually fatal. A team of researchers from the University of California, Riverside and the University of Notre Dame are studying the molecular mechanisms by which ovarian cancer spreads–or metastasizes–to uncover new therapeutic opportunities.

In their latest paper, published in the journal Oncogene, they used live imaging and electron microscopy to study the cellular activities associated with successful metastasis, including the expression of a group of proteins called cadherins, which help cells bind together. Since these proteins enable cancer cells to anchor to new sites in the body, it may be possible to disrupt metastasis by blocking cadherin-mediated binding.

The research was led by Mark Alber, a distinguished professor of applied mathematics at UC Riverside, and M. Sharon Stack, a Kleiderer-Pezold professor of biochemistry and director of Notre Dame Harper Cancer Research Institute.

As primary ovarian tumors metastasize, they shed both single cells and clusters of cells, called multicellular aggregates (MCAs), into the pelvis and abdomen. To study exactly how metastasis occurs, the researchers quantified the interactions between epithelial ovarian cancer (EOC) cells and three-dimensional models of the abdomen wall. They showed when EOC cells acquired N-cadherin (Ncad), an event that occurs in human EOC tumors, they could penetrate and attach to the abdomen wall. Furthermore, MCAs dispersed prior to invasion as a large cohort of cells, showing that cell to cell junctional integrity (i.e. attachment at the single cell level) was needed for successful metastasis.

Alber said unlike results observed in other cancers, ovarian cancer cells do not appear to exhibit a 'leader-follower' type of collective cell invasion.

"Interestingly, co-culture of Ncad-expressing cells with cells expressing E-cadherin (Ecad) did not promote invasion of the Ecad-expressing cells, demonstrating that Ncad-expressing cells do not simply lead the way for other cell populations to follow," Stack said.

The findings emphasize the importance of Ncad in ovarian cancer metastasis and provide the rationale to support pre-clinical studies using Ncad-blocking molecules as a therapeutic strategy to suppress EOC metastatic anchoring.

The group is using these results to develop computational models of cancer cell invasion. Future studies will also use patient samples, which will be provided by collaborators from the City of Hope, in Duarte, Calif. for combined modeling and experimental approaches to obtain novel insights into the cellular mechanisms of ovarian cancer metastasis.

###

The title of the Oncogene paper is "Cadherin composition and multicellular aggregate invasion in organotypic models of epithelial ovarian cancer intraperitoneal metastasis" (published online: http://rdcu.be/tyCF). In addition to Alber and Stack, contributors include assistant research scientist Oleg Kim at UC Riverside, and Yuliya Klymenko, Elizabeth Loughran, Jing Yang and Rachel Lombard, who are all at Notre Dame.

Media Contact

Sarah Nightingale
[email protected]
951-827-4580
@UCRiverside

http://www.ucr.edu

Original Source

https://ucrtoday.ucr.edu/48080 http://dx.doi.org/10.1038/onc.2017.171

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Announcing the 2nd International Conference on Civil Engineering and Smart Construction (ICCESC 2025)

Announcing the 2nd International Conference on Civil Engineering and Smart Construction (ICCESC 2025)

November 11, 2025
Exploring Social Capital’s Impact on Regenerative Agriculture

Exploring Social Capital’s Impact on Regenerative Agriculture

November 11, 2025

Review Retracted: Amino Acids in Plant Science

November 11, 2025

Unraveling Wheat Resistance Mechanisms to Fusarium Crown Rot

November 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1304 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Announcing the 2nd International Conference on Civil Engineering and Smart Construction (ICCESC 2025)

Exploring Social Capital’s Impact on Regenerative Agriculture

Review Retracted: Amino Acids in Plant Science

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.