• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Study sets framework for precision surveillance of colorectal cancer

Bioengineer by Bioengineer
January 7, 2022
in Biology
Reading Time: 3 mins read
0
Vanderbilt research team probes colorectal cancer development
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team of Vanderbilt researchers has revealed some of the mechanisms by which polyps develop into colorectal cancer, setting the framework for improved surveillance for the cancer utilizing precision medicine.

Vanderbilt research team probes colorectal cancer development

Credit: Vanderbilt University Medical Center

A team of Vanderbilt researchers has revealed some of the mechanisms by which polyps develop into colorectal cancer, setting the framework for improved surveillance for the cancer utilizing precision medicine.

Their study, published Dec. 14 in Cell, describes findings from a single-cell transcriptomic and imaging atlas of the two most common colorectal polyps found in humans: conventional adenomas and serrated polyps. They determined that adenomas arise from expansion of stem cells that are driven by activation of WNT signaling, which contributes to the development of cancer, while serrated polyps derive into cancer through a different process called gastric metaplasia. The finding about metaplasia, an abnormal change of cells into cells that are non-native to the tissue, was surprising, the researchers said.

“Cellular plasticity through metaplasia is now recognized as a key pathway in cancer initiation, and there were pioneering contributions to this area by investigators here at Vanderbilt,” said Ken Lau, PhD, associate professor of Cell and Developmental Biology, one of the study’s corresponding authors. “We now have provided evidence of this process and its downstream consequences in one of the largest single-cell transcriptomic studies of human participants from a single center to date.”

The researchers did an integrative analysis of 128 datasets of tissue samples from 62 tumors. They performed single-cell RNA sequencing, multiplex immunofluorescence and multiplex immunohistochemistry on the samples, which were collected from diverse sex, racial and age groups.

The cells from serrated polyps did not exhibit WNT pathway activation nor a stem cell signature. Moreover, the researchers observed that these cells had highly expressed genes not normally found in the colon, leading them to hypothesize that metaplasia plays a role in how serrated polyps become cancerous. The researchers observed in the serrated-specific cells highly expressed genes not normally found in the colon but are expressed in the stomach, including MUC5AC, AQP5, TACSTD2 (TROP2), TFF2, MUC17 and MSLN.

“We propose a new paradigm in which damage to the proximal colon, possibly from microbiota, initiates a metaplastic cascade that may eventually select for survival/proliferative pathways, such as activating mutations in BRAF,” the researchers wrote in the paper.

Bob Chen, a Vanderbilt University graduate student, and Cherie’ Scurrah, PhD, are the paper’s co-first authors.

The study provided a number of other findings of clinical significance. For instance, sessile serrated lesions can be challenging to identify, and the study suggest biomarkers that may confirm their diagnosis. The study revealed much about the mechanisms of sessile serrated lesions in regulating the tumor immune landscape.

“The findings in our atlas lay the foundation for opening novel strategies for interception of cancer progression, including better surveillance protocols, chemoprevention and pre-biotic and pro-biotic therapies” said Martha Shrubsole, PhD, research professor in the Division of Epidemiology, and a corresponding author.

The Vanderbilt research was supported by the Human Tumor Atlas Network grant from the Cancer Moonshot initiative of the National Cancer Institute and other funding from the National Cancer Institute, the Congressionally Directed Medical Research Program of the U.S. Department of Defense, Cancer UK, Janssen, and the Nicholas Tierney GI Cancer Memorial Fund.

“This massive effort is only made possible through the close collaboration of a multidisciplinary team, integrating expertise from the Vanderbilt University Basic Sciences, the Vanderbilt University Medical Center Epithelial Biology Center, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center,” said Robert Coffey, Jr., MD, Ingram Professor of Cancer Research, professor of Medicine and Cell and Developmental Biology, and a corresponding author.

Other Vanderbilt authors who contributed to the study include Eliot McKinley, Alan Simmons, Marisol Ramirez-Solano, Xiangzhu Zhu, Nicholas Markham, Cody Heiser, Paige Vega, Andrea Rolong, Hyeyon Kim, Quanhu Sheng, Yuan Zhou, Austin Southard-Smith, Yanwen Xu, James Ro, Angela Jones, Frank Revetta, Lynne Berry, Hiroaki Niitsu, Mirazul Islam, Jeremy Goettel, Wei Zheng, Kay Washington, Qiuyin Cai, James Goldenring, Jeffrey Franklin, Timothy Su, Won Jae Huh, Simon Vandekar, Joseph Roland and Qi Liu.



Journal

Cell

DOI

10.1016/j.cell.2021.11.031

Method of Research

Experimental study

Subject of Research

Human tissue samples

Article Title

Differential pre-malignant programs and microenvironment chart distinct paths to malignancy in human colorectal polyps

Article Publication Date

14-Dec-2021

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

BBX Gene Family’s Role in Chrysanthemum Fungus Defense

October 21, 2025
Shifts in Colorectal Cancer Screening Methods Among Insured Populations

Shifts in Colorectal Cancer Screening Methods Among Insured Populations

October 21, 2025

Sex-Specific Liver Transcriptomes: Maternal Obesity’s Impact

October 21, 2025

Unraveling the T-cell Surge: Key Genes That Forecast T-cell Expansion in Cancer Immunotherapy

October 21, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1271 shares
    Share 508 Tweet 317
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    304 shares
    Share 122 Tweet 76
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    137 shares
    Share 55 Tweet 34
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    130 shares
    Share 52 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mouse study uncovers enduring metabolic risks associated with ketogenic diet

Distinct Risk Profiles Identified for Suicide Attempts Versus Completed Suicide

New Study Finds Babies Born 8-10 Weeks Premature Can Safely Be Milk Fed Without Gut Complications

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.