• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, December 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Study says salt marshes have limited ability to absorb excess nitrogen

Bioengineer by Bioengineer
November 29, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Photo by DS Johnson/VIMS.

Add fertilizer to your garden and your plants will probably grow bigger and taller. Add fertilizer to a salt marsh and the plants may not get any bigger at all. That's according to a new study led by Dr. David Samuel Johnson of William & Mary's Virginia Institute of Marine Science.

The study results have important implications for the management and care of salt marsh habitats. These coastal resources have long thought to be "nutrient sponges" that soak up excess nitrogen through greater plant growth and other means, thus helping to prevent low-oxygen dead zones, fish kills, and harmful algal blooms in nearby waters. Lack of enhanced plant growth in the current study throws this assumption into doubt.

Says Johnson, "Our work underscores that we can't simply rely on salt marshes to clean up nutrient pollution. We need to do better job at keeping nutrients out of the water in the first place." Sources of excess nutrients include wastewater and runoff of agricultural and lawn fertilizers. Their presence in coastal waters can lead to over-fertilization or what scientists call "eutrophication."

Johnson and his team, including colleagues from Connecticut College, the Woods Hole Research Center, and Bryn Mawr College studied coastal eutrophication by conducting an unprecedented experiment in which they flooded football-fields worth of salt marsh in northeastern Massachusetts with fertilizer-rich water for almost a decade.

Scott Warren, a professor at Connecticut College and study co-author, says "When we were able to mimic a eutrophied estuary at an ecosystem scale–quite a challenge I must add–we found that salt marshes did not respond as you might have predicted from fertilization experiments done over the past half a century or so."

Despite the abundant supply of nitrogen, a key plant nutrient, plants in the fertilized marshes didn't grow much bigger than those in unfertilized marshes. "We were surprised at the mild responses, even after almost a decade of fertilization," says Johnson. Earlier salt marsh studies reported plants growing larger in response to adding fertilizer. Previous studies also found that fertilizer changed species composition, causing some species to outcompete others. "The species composition didn't budge during the entire experiment," Johnson says.

The mild response of plants doesn't mean that salt marshes are safe from eutrophication, however. Johnson notes that when it comes to understanding eutrophication's impact on salt marshes, the answer may lie beneath the surface. In an earlier paper from the same field study, published in Nature, the research team found that fertilizer treatments caused the marsh edges to collapse and erode away. Again, this is opposite of what they had predicted.

"We hypothesized that the grass would grow taller, which would trap more sediment and help the marsh grow," says Johnson. Instead they found that plants in fertilized marshes had fewer roots and rhizomes than those in non-fertilized ones, which may have contributed to the collapse.

One reason the team's results differed from previous studies may be their choice of fertilizer. "We used nitrate fertilizer, which is the most common form of nitrogen in eutrophied estuaries," says Johnson. "Much of the previous work used ammonium fertilizer. Those studies had different questions than ours; they weren't specifically looking to understand eutrophication." Wetland plants prefer ammonium to nitrate because it takes less energy to process, so bigger plants with application of ammonium would not be unexpected.

Another reason the plants may not have responded strongly was the way the fertilizer was delivered–with flooding tidal water, which meant that less fertilizer reached the plants compared to previous studies that had added fertilizer directly to the marsh surface.

Their work is published online in Ecological Applications. Funding for the research comes from the National Science Foundation, the Northeast Climate Science Center, and the Jean C. Tempel Professorship in Botany at Connecticut College.

###

Media Contact

David Malmquist
[email protected]
804-684-7011
@VIMS_News

http://www.vims.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Shear Band Formation in BCC HfNbTaTiZr Alloy

Shear Band Formation in BCC HfNbTaTiZr Alloy

December 8, 2025

Magnetic Resonance Imaging’s Role in Forensic Science

December 8, 2025

Vitamin D’s Role in Pediatric Asthma: Evidence, Implications

December 8, 2025

AI Chatbots vs. Human Counselors: Mental Health Attitudes

December 8, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    204 shares
    Share 82 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    121 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    107 shares
    Share 43 Tweet 27
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Shear Band Formation in BCC HfNbTaTiZr Alloy

Magnetic Resonance Imaging’s Role in Forensic Science

Vitamin D’s Role in Pediatric Asthma: Evidence, Implications

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.