• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Study reveals PGK1 enzyme as therapeutic target for deadliest brain cancer

Bioengineer by Bioengineer
February 23, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: MD Anderson Cancer Center

Discovery of a dual role played by the enzyme phosphoglycerate kinase 1 (PGK1) may indicate a new therapeutic target for glioblastoma, an often fatal form of brain cancer, according to researchers at The University of Texas MD Anderson Cancer Center.

Findings published in the Feb. 23 online issue of Molecular Cell determined PGK1 as instrumental in regulating both cell metabolism and autophagy, a cellular process crucial to tumor development and maintenance. In previous studies, PGK1 was shown to play a role in coordinating cellular activities tied to cancer metabolism and brain tumor formation, and is associated with tumor metastasis and drug resistance.

"Our finding that PGK1 acts as both a glycolytic enzyme and a protein kinase in cell metabolism, autophagy, and cell proliferation greatly enhances our understanding of protein enzymes controlling cellular function," said Zhimin Lu, M.D., Ph.D., professor of Neuro-Oncology. "Because it regulates both autophagy and cell metabolism, PGK1 proves its significance in maintaining cellular activities, thus offering a potential new approach for cancer treatment."

Lu's team found that PGK1 unexpectedly impacts the protein Beclin1 through phosphorylation, which modulates protein function. Beclin1 plays a central role in autophagy, a "recycling" process allowing cells to thrive even when starved of nutrients and/or oxygen. Autophagy has been increasingly linked to cancer since it permits tumors to access vital energy sources and cellular building blocks necessary to grow and spread.

The researchers observed that lack of oxygen and the essential amino acid glutamine resulted in a complex protein-related chain of events where PGK1 phosphorylates Beclin1, which is required for autophagy and brain tumor development. The process is thought to be one reason why glioblastoma patients generally have poor prognoses.

"Upregulated tumor-protective autophagy is one of the reasons for cancer treatment resistance," said Lu. "These findings suggest that approaches inhibiting PGK1-regulated autophagy are likely to increase cancer treatment efficacy. Further investigations into this area of research are underway."

###

MD Anderson team participants included Xu Qian, Ph.D., Xinjian Li, Ph.D., Qingsong Cai, Ph.D., Yuhui Jiang, Ph.D., Jong-Ho Lee, Ph.D., Yugang Wang, Ph.D.,Yan Xia, Ph.D., and Yanhua Zheng, Ph.D., Neuro-Oncology; and David Hawke, Ph.D., Systems Biology. Other participating institutions included Capital Medical University, Beijing; Shanghai Jiotaong University School of Medicine, Shanghai; Nanjing Medical University, Nanjing, China; Washington State University College of Pharmacy, Spokane, Wash.; and The University of Texas Graduate School of Biomedical Sciences at Houston.

The study was funded by the National Institutes of Health (CA109035, CA169603, CA016672, CA127001 and NS08975); the James S. McDonnell Foundation 21st Century Initiative in Brain Cancer Research Award (220020318); and a Sister Institution Network Fund and Institutional Research Grant from MD Anderson.

Media Contact

Ron Gilmore
[email protected]
713-745-1898
@mdandersonnews

http://www.mdanderson.org

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Twin Study Reveals Genetic Risk for Preterm NEC

Twin Study Reveals Genetic Risk for Preterm NEC

November 10, 2025

Could Liquid Biopsy Testing Enable Earlier Detection Across Multiple Cancer Types?

November 10, 2025

Decoding Apigenin’s Role in Bronchiectasis Treatment

November 10, 2025

miR-770-5p Regulates KLF4/EGFR via PRMT5

November 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    315 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1303 shares
    Share 520 Tweet 325

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Twin Study Reveals Genetic Risk for Preterm NEC

Could Liquid Biopsy Testing Enable Earlier Detection Across Multiple Cancer Types?

Decoding Apigenin’s Role in Bronchiectasis Treatment

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.