• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Study reveals key role of mRNA’s ‘fifth nucleotide’ in determining sex in fruit flies

Bioengineer by Bioengineer
November 30, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team of scientists led by the University of Birmingham has shown how a common mRNA modification, N6-methyladenosine (m6A), regulates gene expression to determine the sex of fruit flies.

The function of m6A, an mRNA modification known as the 'fifth nucleotide', has long been a mystery. But a new study, published today in Nature, has revealed that m6A plays a key role in the regulation of the Sex-lethal (Sxl) gene, which controls sex determination of the fruit fly Drosophila.

Sxl is a 'switch gene', meaning that Drosophila sex is determined by whether or not Sxl protein is made. The Sxl gene is transcribed into mRNA in both males and females, but through a process called 'alternative splicing' only the female mRNA can be made into a functional protein.

Alternative splicing is a widespread mechanism of gene expression and occurs in almost all human genes, allowing the synthesis of many more proteins than would be expected from the 20,000 protein-coding genes in our genome.

The new study shows that m6A mediates this process for Sxl in Drosophila, ultimately determining whether a fly develops as male or female. The findings offer an important insight into a classic textbook example of an essential and widely studied process.

'Despite sex determination being so fundamental, nature has found many ways of determining sex,' says Dr Matthias Soller from the School of Biosciences at the University of Birmingham and lead author on the paper.

'Our study suggests that m6A-mediated adjustment of gene expression might be an ancient yet unexplored mechanism for the development of this diversity.'

The collaboration began after co-author Dr Rupert Fray's group at the University of Nottingham found that a plant enzyme required for putting the modified nucleotide into Arabidopsis mRNA interacted with the plant version of the Drosophila sex determination factor FEMALE-LETHAL(2)D.

'The revelation connecting m6A to Drosophila sex determination though came much later thanks to sensitive genetic interactions affecting the development of female flies,' Dr Soller explains.

The study also found that in addition to its role in determining the sex of somatic cells, Sxl regulation by m6A is required to initiate germline stem cell differentiation for developing eggs. Without this regulation, lack of Sxl expression in stem cells can result in the development of ovarian cancer.

'The reversible nature of the m6A methylmark adds a new layer to the regulation of gene expression now termed "epitranscriptomics" and warrants further research to establish links with human disease such as cancer,' adds Dr Irmgard Haussmann of Coventry University.

###

Media Contact

Liz Bell
[email protected]
44-121-414-2772
@unibirmingham

http://www.bham.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Polyacrylic Acid-Copper System Detects Gaseous Hydrogen Peroxide

Polyacrylic Acid-Copper System Detects Gaseous Hydrogen Peroxide

September 13, 2025
blank

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

September 13, 2025

Insights on Menstrual Health in Eating Disorder Units

September 12, 2025

Nicotine Dependence Linked to Health Behaviors in Korean Smokers

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Polyacrylic Acid-Copper System Detects Gaseous Hydrogen Peroxide

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

Insights on Menstrual Health in Eating Disorder Units

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.