• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Study published in Nature reveals molecular pathway of weight-controlling hormone

Bioengineer by Bioengineer
October 2, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: NGM Bio

SOUTH SAN FRANCISCO, CA – Oct. 2, 2017 – Scientists at NGM Bio have revealed deep insights into the role that a little-understood human hormone plays in regulating body weight. Named Growth and Differentiation Factor 15 (GDF15), this hormone is typically active only when the body experiences acute or prolonged stress, including following exposure to tissue-damaging toxins, such as chemotherapy, or during chronic disease, such as obesity or cancer. As a result, the GDF15 pathway holds promise for the development of potential therapeutics for diseases of both excess and insufficient body weight.

The paper, published in Nature, uncovers important molecular biology and mechanisms related to this hormone and its receptor, including the crystal structure of the complex. Based on these preclinical findings, NGM and its collaborator, Merck, are advancing multiple drug candidates, including NGM386. NGM386 is an optimized variant of GDF15 that activates its cognate receptor, known as GDNF Receptor Alpha-like (GFRAL), and holds potential as a treatment for obesity, a growing epidemic that affects an estimated 78 million adults in the United States. NGM is also developing NGM120, a monoclonal antibody antagonist of GFRAL that holds potential as a treatment for cachexia. Cachexia is an extreme form of weight loss exacerbated by chemotherapy that afflicts more than half of all cancer patients, for whom it is frequently the proximate cause of death.

"While it had been established that GDF15 is involved in weight-related diseases, the lack of information about its signaling pathway had impeded the development of new medicines harnessing this biology," said Jin-Long Chen, Ph.D., founder and chief scientific officer of NGM Bio. "This publication describes the critical breakthrough that enabled the development of multiple drug candidates for these difficult-to-treat disorders, which could ultimately transform the lives of patients battling obesity and cachexia."

The paper shows that GDF15 binding to GFRAL is required both to protect mice from weight gain in metabolically-stressed conditions and to trigger excessive weight loss in mice treated with chemotherapy. This work also demonstrated that GFRAL forms a complex with the receptor tyrosine kinase RET on the surface of neurons that are localized exclusively in the brainstem, and that these neurons form part of what has been recently dubbed the "emergency circuit" of body weight regulation. This circuit, which resides deep within the brain, lies outside of those areas normally associated with weight control. Until recently, the identity of circulating molecules that could activate this circuit remained elusive. By binding to GFRAL and activating RET, GDF15 'flips the switch' on this circuit, leading to anorexia and weight loss.

NGM's research supports the hypothesis that obesity and cachexia are opposite sides of the same biological process. Drugs such as NGM386 and NGM120 that can toggle the GFRAL 'switch' on or off may have the potential to offer therapeutic benefit for a range of weight-related diseases.

"GFRAL was discovered to be the receptor for GDF15 by one of our dedicated scientists whose commitment to drug discovery prompted her to visit the lab on a holiday weekend to check on an experiment. In the ensuing years, working in collaboration with Merck, our team has advanced multiple product candidates against the GDF15 receptor complex for human testing," said William J. Rieflin, chief executive officer of NGM Bio. "We hope the dedication of our researchers and clinicians will ultimately translate into medicines for patients who struggle with weight-related diseases."

The paper, entitled "Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15," published online on Sept. 27 and will appear in the October 12, 2017 print issue of Nature.

###

About NGM Biopharmaceuticals, Inc.

NGM Bio is a research-driven biotechnology company committed to discovering and developing novel biologics for the treatment of life-threatening diseases. NGM Bio's portfolio consists of multiple programs in clinical testing and more than a dozen additional programs in various stages of preclinical development. The company's most advanced compound, NGM282, is a wholly-owned asset that recently completed a Phase 2 trial in nonalcoholic steatohepatitis (NASH). NGM Bio has established a broad strategic collaboration with Merck. NGM Bio is backed by The Column Group, Merck, Prospect Ventures, Topspin Partners, Rho Ventures, Tichenor Ventures and other leading investors around the world. For more information, please visit http://www.ngmbio.com.

Contacts:

Jeff Jonker
President
NGM Biopharmaceuticals
650-243-5558
[email protected]

Pam Lord
Canale Communications
619-849-6003
[email protected]

Media Contact

Pam Lord
[email protected]
619-849-6003

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

SNARE Neofunctionalization Driven by Vacuole Retrieval

October 4, 2025
blank

Exploring Shigella Phage Sf14’s tRNA Contributions

October 3, 2025

Encapsulated Pseudomonas Controls Pistachio Gummosis Effectively

October 3, 2025

Scientists Uncover New Intracellular Trafficking Pathway in Plant Cells

October 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    89 shares
    Share 36 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    68 shares
    Share 27 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Electron Donor–Acceptor Complexes Enable Asymmetric Photocatalysis

Self-Efficacy Modulates Nurses’ Response to Abusive Supervision

SNARE Neofunctionalization Driven by Vacuole Retrieval

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.