• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Study points a way to better implantable medical devices

Bioengineer by Bioengineer
March 20, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Photo-illustration by Felice Frankel

CAMBRIDGE, MA — Medical devices implanted in the body for drug delivery, sensing, or tissue regeneration usually come under fire from the host's immune system. Defense cells work to isolate material they consider foreign to the body, building up a wall of dense scar tissue around the devices, which eventually become unable to perform their functions.

Researchers at MIT and Boston Children's Hospital have identified a signaling molecule that is key to this process of "fibrosis," and they have shown that blocking the molecule prevents the scar tissue from forming. The findings, reported in the March 20 issue of Nature Materials, could help scientists extend the lifespan of many types of implantable medical devices.

"This gives us a better understanding of the biology behind fibrosis and potentially a way to modulate that response to prevent the formation of scar tissue around implants," says Daniel Anderson, an associate professor in MIT's Department of Chemical Engineering, a member of MIT's Koch Institute for Integrative Cancer Research and Institute for Medical Engineering and Science (IMES), an affiliate at Boston Children's Hospital, and the senior author of the study.

The paper's lead author is Koch Institute and JDRF postdoc Joshua Doloff.

Preventing fibrosis

Anderson's lab has been working for several years on an implantable device that could mimic the function of the pancreas, potentially offering a long-term treatment for diabetes patients. The device encapsulates insulin-producing islet cells within a material called alginate, a polysaccharide naturally found in algae. Alginate provokes a lesser immune response than human-made materials such as metal, but it still induces fibrosis.

To investigate how fibrosis happens, the MIT team systematically knocked out different components of the immune system in mice. They found that cells called macrophages are necessary for fibrosis to occur, and that when those cells are missing, scar tissue does not form around implanted devices.

The researchers then identified a signaling molecule that appears to help macrophage precursors known as monocytes differentiate into mature macrophages, which then initiate fibrosis. They also discovered that if they blocked the cell surface receptors for this molecule, known as CSF1, they could prevent implant-induced fibrosis from occurring.

Importantly, this interference did not stop macrophages from carrying out other critical functions.

"We show that you preserve many other important immune functions, including wound healing and phagocytosis, but you lose this fibrotic cascade," Doloff says. "We're preventing the macrophages from toggling into an activated warning state where they sound the alarm for this massive immune response to show up."

In this study, the researchers showed that blocking CSF1 receptors prevented fibrosis not only with alginate but also ceramic and a plastic called polystyrene.

"It's generalizable to many different types of biomaterials, and hopefully will also be generalizable to many platforms for different purposes," Doloff says.

Targeted approach

Other implantable devices whose functions can be disrupted by fibrosis include glucose sensors for diabetics, pacemakers, and any other devices that need to interact with surrounding tissue.

Currently, Doloff and postdoc Shady Farah, who is also a co-author on the Nature Materials study, are working on ways to deliver the CSF1R-blocking drug along with various types of implantable devices. This targeted approach holds the potential to be safer than another strategy that some researchers have tried, which is widespread suppression of the immune system.

"If you use a broad-spectrum drug, you may be getting rid of cell types that are important for reducing fibrosis or even for other vital immune functions in the body — wound healing or fighting off parasites, bacteria or viral infections," Doloff says.

###

Other authors of the paper include Robert Langer, the David H. Koch Institute Professor at MIT and a research associate at Boston Children's Hospital, who says that "one of the things that is particularly exciting to me is that this is one of the first studies to really examine the fundamentals of how the immune system interacts with implantable biomaterials."

The research was funded by JDRF, the Leona M. and Harry B. Helmsley Charitable Trust, the National Institutes of Health, and the Tayebati Family Foundation.

Media Contact

Sarah McDonnell
[email protected]
617-253-8923
@MIT

http://web.mit.edu/newsoffice

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

High-Fat Diet Hinders Memory Formation by Suppressing Autophagy

September 17, 2025

Keck Hospital of USC Recognized as Vizient Top Performer for Third Consecutive Year

September 17, 2025

Exploring Long COVID’s Impact on Menstruation Cycle

September 17, 2025

Metabolic Differences Reveal Diets in Asian Ethnicities

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

High-Fat Diet Hinders Memory Formation by Suppressing Autophagy

Keck Hospital of USC Recognized as Vizient Top Performer for Third Consecutive Year

Exploring Long COVID’s Impact on Menstruation Cycle

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.