• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Study offers new insights into receptor that regulates Staphylococcal virulence

Bioengineer by Bioengineer
February 7, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A recent study published in Cell Chemical Biology has revealed new insights into a molecular pathway that leads to Staphylococcus aureus virulence. Using a tool that mimics the cellular environment, Princeton University researchers reconstituted a key receptor protein responsible for regulating S. aureus virulence. These bacterial infections can cause a range of human illnesses from skin infections to pneumonia.

"S. aureus has sort of a Jekyll and Hyde lifestyle," said Tom Muir, the Van Zandt Williams Jr. Class of 1965 Professor of Chemistry and Department Chair and corresponding author of the article. "When it's on your skin it's fairly benign, but once it gets into an abscess or cut, it changes its behavior and starts making all sorts of proteins that lead to various problems."

The bacteria switches on this bad behavior by using a chemical signaling system known as quorum sensing. In this system bacteria secrete compounds called autoinducer peptides (AIPs) that are detected by receptor proteins called accessory gene regulator (Agr) kinases. Once the kinases sense a certain concentration of peptides, they release the troublemaking proteins or virulence factors.

"Quorum sensing is a way for the bacteria to count themselves," Muir said. "When they get above a certain threshold, they attack. They don't want to do this too early because it costs a lot of energy, so they wait until there are enough of their comrades around to make a difference."

Within the bacteria's quorum sensing system there are four types of peptides and each group is detected by corresponding Agr receptor kinases. Each peptide-receptor pair has distinct timing at which it turns on quorum sensing and thus virulence. To investigate how the timing of the quorum sensing was linked to the receptor kinases, the researchers developed so-called nanodiscs allowed them to observe how Agr kinases operate in a cell-like environment. Using the nanodiscs, the team elucidated the activation mechanism of receptor kinase AgrC and discovered a key regulatory hotspot in the kinase that could greatly affect its activity.

These new insights into how the kinase is turned on provides a starting point for designing molecules to inhibit it, Muir said. "This is actually terrific for screening drugs. Even though this work started as a basic science study, the tool that came out of it will be really useful for applications down the line," he said.

###

Read the full article here:

Wang, B.; Zhao, A.; Xie, Q.; Olinares, P. D.; Chait, B. T.; Novick, R. P.; Muir, T. W. "Functional Plasticity of the AgrC Receptor Histidine Kinase Required for Staphylococcal Virulence." Cell Chem. Bio. 2017 24, 76. This work was supported by NIH grants AI042783, GM095880, and GM103314.

Media Contact

Tien Nguyen
[email protected]
609-258-6523
@Princeton

http://www.princeton.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Cultivating Future Health Entrepreneurs: A Collaborative Strategy

October 28, 2025
“‘Broken’ Genes Key to Marsupial Fur Color Variation”

“‘Broken’ Genes Key to Marsupial Fur Color Variation”

October 28, 2025

Advanced AI ECG Technology Enhances Detection of Severe Heart Attacks in Emergency Situations

October 28, 2025

Autistic Traits Shape Social Attention in India

October 28, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1288 shares
    Share 514 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    198 shares
    Share 79 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cultivating Future Health Entrepreneurs: A Collaborative Strategy

“‘Broken’ Genes Key to Marsupial Fur Color Variation”

Advanced AI ECG Technology Enhances Detection of Severe Heart Attacks in Emergency Situations

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.