• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Study offers new insight into powerful inflammatory regulator

Bioengineer by Bioengineer
May 1, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Photo by L. Brian Stauffer

CHAMPAIGN, Ill. — A new study in mice reveals how a protein called Brd4 boosts the inflammatory response — for better and for worse, depending on the ailment. The study is the first to show that this protein, while problematic in some circumstances, also can protect the body from infection. The findings are reported in the Proceedings of the National Academy of Sciences.

The heat, swelling, redness and pain associated with inflammation are evidence that the immune system is working to protect the body. Once its job is complete, the acute inflammation normally recedes and disappears.

Sometimes inflammation fails to stop, and instead turns against the body, attacking healthy tissues and leading to chronic inflammatory diseases such as asthma, arthritis, diabetes and cancer.

One very powerful protein complex, called NF-kappaB, influences the expression of numerous genes and governs both beneficial and harmful inflammatory responses. When NF-kappaB regulates discriminately, the body heals and survives. When NF-kappaB overreacts, inflammation can become dangerous.

The NF-kappaB protein is a primary target for research looking for a way to stop inflammatory diseases.

The new study, led by University of Illinois biochemistry professor Lin-Feng Chen , reveals how Brd4 influences NF-kappaB and contributes to inflammation.

"Brd4 acts like a turboboost for the NF-kappaB protein that regulates inflammation. For NF-kappaB to be 100 percent productive, it needs the help from Brd4," Chen said.

Earlier work in Chen's lab revealed that Brd4 attaches to the NF-kappaB protein by recognizing a chemical tag. If Brd4 or the tag is not present, the potential of NF-kappaB protein to act as inflammation regulator is compromised.

The new study in mice confirmed that Brd4 plays a major role in acute inflammatory responses. The researchers deleted the mouse Brd4 gene in certain types of immune cells, including macrophages, and monitored the immune response of these mice. Many of the NF-kappaB-dependent, inflammation-related genes involved in fighting infection were down-regulated in Brd4-deficient macrophages.

"We found that in the absence of Brd4, the immune system of mice was compromised. They were more resistant to a massive immune response, but more susceptible to bacterial infection," Chen said.

"Cancers and some inflammatory diseases use Brd4 to boost the expression of genes that lead to the growth or persistence of the disease, but Brd4 has the same effect on inflammation that is needed to kill bacteria and viruses," he said.

The researchers also discovered a new mechanism for the reduced inflammatory gene expression in cells lacking Brd4. They found that deletion of Brd4 enhanced the protein synthesis of a NF-kappaB inhibitor, preventing the NF-kappaB from stimulating inflammatory gene expression.

"The next step is to test whether the absence of the gene for Brd4 would weaken the strength of the NF-kappaB protein – and inhibit chronic inflammatory diseases – without compromising the body's ability to fight off bacteria and viruses," Chen said.

"Pharmaceutical companies are currently investing enormous resources – to the tune of hundreds of millions of dollars – seeking molecules that will inhibit the Brd4," Chen said. "Our findings urge caution and further foundational research before treatments involving the inhibition of Brd4 are used on patients."

###

Editor's notes:

To reach Lin-Feng Chen, call 217-333-7764; email [email protected]. The paper "Brd4 modulates the innate immune response through Mnk2-eIF4E pathway-dependent translational control of IκBα" is available online and from the U. of I. News Bureau .

DOI: 10.1073/pnas.1700109114

Media Contact

Steph Adams, Science Writer, Illinois School of MCB
[email protected]
217-333-5802
@NewsAtIllinois

http://www.illinois.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Capturing a Split-Second Glimpse of Cellular Activity in Freeze-Frame

Capturing a Split-Second Glimpse of Cellular Activity in Freeze-Frame

August 23, 2025
Children’s SARS-CoV-2 Antibodies Show Stronger FcR Binding

Children’s SARS-CoV-2 Antibodies Show Stronger FcR Binding

August 23, 2025

Link Between Type 2 Diabetes and Heart Failure

August 23, 2025

New Jurassic Bittacidae Species Reveal Wing Spot Diversity

August 23, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Capturing a Split-Second Glimpse of Cellular Activity in Freeze-Frame

Children’s SARS-CoV-2 Antibodies Show Stronger FcR Binding

Link Between Type 2 Diabetes and Heart Failure

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.