• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Study of supercooled liquids contributes to better understanding of phase change processes

Bioengineer by Bioengineer
July 9, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A paper by Kazan Federal University saw light in The Journal of Chemical Physics

IMAGE

Credit: Kazan Federal University

The authors propose a new quantitative approach to better measure the crystal growth rate in supercooled liquids. The approach is based on a unique statistical algorithm used in molecular dynamics simulation.

Crystallization occurs with matter in a supercooled liquid or in an amorphous state. According to the classical theory, this process occurs through the formation of crystalline phase foci, called nuclei. The crystal nucleation rate and crystal growth rate in such matter are determined by a number of kinetic factors, among which the decisive role is played by the frequency of attachment of atoms to a nucleus and the frequency of detachment of atoms from the surface of a nucleus. Obviously, the predominance of the atoms attachment frequency will contribute to a stable crystal growth. At the same time, the currently existing experimental methods do not allow the direct measurement of these kinetic factors due to the difficulties associated with the identification of various phase atoms in the volume of the system. Therefore, molecular dynamics simulation is most suitable and affordable method.

The researchers were faced with the task of making an accurate assessment of kinetic factors and constructing their dependence on the size of crystalline nuclei based on molecular dynamics calculations. For this, an algorithm was developed that tracks atomic rearrangements near the surface of each growing nucleus on the fly. Tracking takes place according to the identification numbers that are assigned to each atom. These numbers make it possible to distinguish between crystal atoms and atoms of the parent disordered phase. With this approach, the accuracy of the calculations is orders of magnitude higher compared to existing methods for estimating kinetic rate factors. This accuracy is achieved due to the fact that the calculations are carried out directly without the use of any model functions and adjustable parameters.

Based on the performed calculations, the researchers were able to estimate the crystal growth rate for the well-known Lennard-Jones model system, following the basic definition – through the difference in the atoms attachment and detachment frequencies. This made it possible to reveal the presence of a stationary regime in the dependence of the growth rate of the crystalline nucleus on its size. The results are in good agreement with the prediction of the classical theory of crystal growth.

The results of the study can be used to develop more accurate methods for estimating the rate of phase transitions in systems with various physicochemical properties, for example, in ionic liquids, molecular liquids, polymer systems, and colloidal solutions. Furthermore, these results can be used to develop practical methods for controlling crystallization and melting processes, which is important in various fields (from metallurgy and microelectronics to pharmaceuticals). The results will also be in demand in the development of a rigorous theory for describing the dependence of kinetic rate factors on the size of the nucleus and on the crystallization time. Another interesting and less studied field is the study of the crystal decay processes.

Further research will be aimed at a detailed study of the mechanisms of the crystalline nuclei decay, where the focus will be on identifying factors that affect the crystals decay rate and their stability. The authors’ work will also be targeted at the development of a rigorous universal kinetic theory for describing crystallization rate factors. The results will be applied in the computer design of crystalline materials with necessary physical and mechanical properties.

###

This work was supported by the Russian Science Foundation (Project No. 19-12-00022).

Media Contact
Yury Nurmeev
[email protected]

Original Source

https://kpfu.ru/eng/news-eng/study-of-supercooled-liquids.html

Related Journal Article

http://dx.doi.org/10.1063/5.0007378

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Enantioconvergent Radical Addition Creates Vicinal Stereocenters

October 7, 2025
Bright Red-NIR Glow from Carbodicarbene Borenium Ions

Bright Red-NIR Glow from Carbodicarbene Borenium Ions

October 6, 2025

Transforming Biogas Waste into an Effective Solution for Ammonium Pollution Cleanup

October 6, 2025

Scientists Incorporate Waveguide Physics into Metasurfaces to Unlock Advanced Light Manipulation

October 6, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    96 shares
    Share 38 Tweet 24
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    94 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    74 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Promising New Drug Combo Provides Hope for Men with Advanced Prostate Cancer

Enantioconvergent Radical Addition Creates Vicinal Stereocenters

Fra-1 Drives Gastric Cancer via Macrophage and HMGA2

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.