• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Study investigates a critical transition in water that remains liquid far below 0 °C

Bioengineer by Bioengineer
November 11, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The theoretical model proposed by Brazilian researchers can be applied to any system in which two energy scales coexist

IMAGE

Credit: Miguel Boyayan/Revista Pesquisa FAPESP

Water can remain liquid at temperatures far below 0 °C. This phase is known as supercooled and is a current focus for scientific research. A theoretical model developed at São Paulo State University (UNESP) in Brazil shows that in supercooled water, there is a critical point at which properties such as thermal expansion and compressibility exhibit anomalous behavior.

Led by Mariano de Souza, a professor in the Physics Department of UNESP’s Institute of Geosciences and Exact Sciences at Rio Claro, the study was supported by FAPESP. An article by Souza and collaborators describing the study has been published in Scientific Reports

“Our study shows that this second critical point is analogous to the liquid-gas transition in water at about 374 °C and at a pressure of some 22 megapascals,” Souza told.

Liquid and gas phases coexist in water at approximately 374 °C. The genesis of this exotic behavior can be observed, for example, in a pressure cooker. At this point, water’s thermodynamic properties begin to display anomalous behavior. For this reason, the point is considered “critical”.

In the case of supercooled water, two phases also coexist, but both are liquid. One is more dense and the other less dense. If the system continues to be cooled appropriately below 0 °C, there comes a point on the phase diagram where the stability of the two phases breaks down, and the water starts to crystallize. This is the second critical point, determined theoretically by the recent study.

“The study shows that this second critical point occurs in the range of 180 kelvins [approximately -93 °C]. Above this point, liquid water can exist. It’s called supercooled water,” Souza said.

“The most interesting part is that the theoretical model we developed for water can be applied to all systems in which two energy scales coexist. For example, it applies to an iron-based superconductor system in which there is also a nematic phase [with molecules oriented in parallel lines but not arranged in well-defined planes]. This theoretical model originated in several experiments with thermal expansion at low temperatures performed in our research laboratory.”

This universal model was obtained by means of a theoretical refinement of the Grüneisen parameter, named for German physicist Eduard Grüneisen (1877-1949). Simply put, this parameter describes the effects of variations in temperature and pressure on a crystal lattice.

“Our analysis of the Grüneisen and pseudo-Grüneisen parameters can be applied to an investigation of critical behavior in any system with two energy scales. It suffices to make appropriate adjustments to the critical parameters in accordance with the system of interest,” Souza said.

###

About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at http://www.fapesp.br/en and visit FAPESP news agency at http://www.agencia.fapesp.br/en to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at http://agencia.fapesp.br/subscribe.

Media Contact
Joao Carlos Silva
[email protected]
55-113-838-4381

Original Source

http://agencia.fapesp.br/31897/

Related Journal Article

http://dx.doi.org/10.1038/s41598-019-48353-4

Tags: Chemistry/Physics/Materials SciencesMolecular Physics
Share13Tweet8Share2ShareShareShare2

Related Posts

Supersolid Spins Synchronize in Unison

Supersolid Spins Synchronize in Unison

October 23, 2025
blank

Golden Platform Unveils the Hidden Forces of Nature’s Invisible Glue

October 23, 2025

Nano-biochar Enables Rice Roots to Convert Toxic Silver Ions into Safer Nanoparticles

October 23, 2025

Neutrino ‘Flavors’ Could Unlock the Universe’s Greatest Mysteries

October 22, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1276 shares
    Share 510 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    307 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    159 shares
    Share 64 Tweet 40
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Improving Neonatal Vascular Access with 7-Rights Framework

Psoriasis-Associated Gene Mutation Found to Affect Gut Health

Second-Gen Sequencing in Lung Cancer Immunotherapy

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.