• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Study identifies processes in the gut that drive fat build-up around the waist

Bioengineer by Bioengineer
May 28, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Research by scientists at King's College London into the role the gut plays in processing and distributing fat could pave the way for the development of personalised treatments for obesity and other chronic diseases within the next decade. The research is published in Nature Genetics.

In the largest study of its kind, scientists analysed the faecal metabolome (the community of chemicals produced by gut microbes in the faeces) of 500 pairs of twins to build up a picture of how the gut governs these processes and distributes fat. The King's team also assessed how much of that activity is genetic and how much is determined by environmental factors.

The analysis of stool samples identified biomarkers for the build-up of internal fat around the waist. It's well known that this visceral fat is strongly associated with the development of conditions including type 2 diabetes, heart disease and obesity.

By understanding how microbial chemicals lead to the development of fat around the waist in some, but not all the twins, the King's team hopes to also advance the understanding of the very similar mechanisms that drive the development of obesity.

An analysis of faecal metabolites (chemical molecules in stool produced by microbes) found that less than a fifth (17.9 per cent) of gut processes could be attributed to hereditary factors, but 67.7 per cent of gut activity was found to be influenced by environmental factors, mainly a person's regular diet.

This means that important changes can be made to the way an individual's gut processes and distributes fat by altering both their diet and microbial interactions in their gut.

On the back of the study researchers have built a gut metabolome bank that can help other scientists engineer bespoke and ideal gut environments that efficiently process and distribute fat. The study has also generated the first comprehensive database of which microbes are associated with which chemical metabolites in the gut. This can help other scientists to understand how bacteria in the gut affect human health.

Lead investigator Dr Cristina Menni from King's College London said: 'This study has really accelerated our understanding of the interplay between what we eat, the way it is processed in the gut and the development of fat in the body, but also immunity and inflammation. By analysing the faecal metabolome, we have been able to get a snapshot of both the health of the body and the complex processes taking place in the gut.'

Head of the King's College London's Twin Research Group Professor Tim Spector said: 'This exciting work in our twins shows the importance to our health and weight of the thousands of chemicals that gut microbes produce in response to food. Knowing that they are largely controlled by what we eat rather than our genes is great news, and opens up many ways to use food as medicine. In the future these chemicals could even be used in smart toilets or as smart toilet paper.'

Dr Jonas Zierer, first author of the study added: 'This new knowledge means we can alter the gut environment and confront the challenge of obesity from a new angle that is related to modifiable factors such as diet and the microbes in the gut. This is exciting, because unlike our genes and our innate risk to develop fat around the belly, the gut microbes can be modified with probiotics, with drugs or with high fibre diets.'

###

Note to editors:

For further information please contact Garfield Myrie in the King's College London press office at: [email protected] / 0207 848 4334

King's College London

King's College London is one of the top 25 universities in the world (2017/18 QS World University Rankings) and among the oldest in

England. King's has more than 29,600 students (of whom nearly 11,700 are graduate students) from some 150 countries worldwide, and some 8,000 staff.

King's has an outstanding reputation for world-class teaching and cutting-edge research. In the 2014 Research Excellence Framework (REF), eighty-four per cent of research at King's was deemed 'world-leading' or 'internationally excellent' (3* and 4*).

Since our foundation, King's students and staff have dedicated themselves in the service of society. King's will continue to focus on world-leading education, research and service, and will have an increasingly proactive role to play in a more interconnected, complex world.

Visit our website to find out more about Vision 2029, King's strategic vision for the next 12 years to 2029, which will be the 200th anniversary of the founding of the university.

Media Contact

Garfield Myrie
[email protected]
020-784-84334
@kingscollegelon

http://www.kcl.ac.uk

http://dx.doi.org/10.1038/s41588-018-0135-7

Share12Tweet7Share2ShareShareShare1

Related Posts

Unraveling Gut Microbiota’s Role in Breast Cancer

September 14, 2025

How SARS-CoV-2 Spike Protein Activates TLR4

September 14, 2025

Interpretable Deep Learning for Anticancer Peptide Prediction

September 13, 2025

Navigating Shadows: Treating Anorexia and C-PTSD

September 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Electrode Material on Radish Germination

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

Unraveling Gut Microbiota’s Role in Breast Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.