• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Study identifies potential combination therapy for ovarian cancer

Bioengineer by Bioengineer
October 29, 2016
in Science
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

(Boston)–A new study has identified an effective combination therapy for treating ovarian cancer cells.

The findings, published in the journal AntiCancer Research, may result in a new treatment option for different types of ovarian cancer, including those that develop resistance to chemotherapy and other treatments.

Ovarian cancer accounts for about three percent of cancers among women, however it causes more deaths than any other cancer of the female reproductive system. Unfortunately it often goes undetected until it has spread within the pelvis and abdomen. At this late stage, it is more difficult to treat and is frequently fatal. Surgery and chemotherapy are generally used to treat this disease. In the absence of target specific drugs, platinum drugs are often used to treat ovarian cancer.

Researchers at Boston University School of Medicine (BUSM) under the direction of Sibaji Sarkar, PhD, instructor of medicine, combined protease calpain inhibitor calpeptin with epigenetic (histone deacetylase) inhibitors sodium butyrate and SAHA. When used in suboptimal doses in combination, they produced enhanced ovarian cancer cell growth inhibition and induced ovarian cancer cell death.

According to the researchers, one of the interesting observations of this study was the finding that calpeptin also works as an epigenetic drug as it is capable of removing the methyl tags from genes. Sarkar explains, "Calpeptin possibly has a dual role. It can kill cancer cells and in addition it may act as an epigenetic drug as well. We believe that epigenetic drugs alone are not the best choice for cancer therapy. We need other target specific and other types of inhibitors but the addition of epigenetic drugs can increase the efficacy of the therapy, inhibiting formation of new cancer progenitor/stem cells by re-expressing tumor suppressor genes and blocking the expression of growth promoting genes even after remission after standard therapy."

In a previous study, this same research group had proposed that epigenetics (when genetically identical cells express their genes differently, causing different outcomes) play a significant role in the formation of cancer progenitor cells, cancer progression, metastasis and cancer drug resistance. They described an epigenetic switch concept, which is turned on during carcinogenesis. Results from other studies have shown that epigenetic drugs sensitize platinum drug resistance ovarian cancer cells and kill breast cancer stem cells, supporting this hypothesis.

In a comparative analysis, the authors previously described the similarities in the genetic and epigenetic events of breast and ovarian cancer suggesting a common epigenetic origin. They have shown before that combination of histone deacetylase inhibitors with calpain inhibitor produced enhanced growth inhibition and cell death in different types of breast cancer cells including triple negative breast cancer cells as they observed in different types of ovarian cancer cells in this study.

###

Other BUSM contributors to this study included Karolina Lapinska (first author), MS, Amber Willbanks and Anuja Oza, MD. Genevieve Housman, MS, from Arizona State University, Shannon Byler, MD, from Boston Children's Hospital/Harvard Medical School and Sarah Heerboth

from Vanderbilt School of Medicine are also co-authors.

The study was partially supported by a grant from American Cancer Society.

Media Contact

Gina DiGravio
[email protected]
617-638-8480
@BostonUNews

http://www.bmc.org

Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10
  • Sustainability Accelerator Chooses 41 Promising Projects Poised for Rapid Scale-Up

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Macrophage-T Cell Interaction Boosts SLAMF1 in TB Defense

Strawberry Notch 1 Protects Neurons by Regulating Yeats4

Revolutionary AI Tool Requires Minimal Data to Analyze Medical Images

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.