• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Study identifies new gene mutation associated with defective DNA repair and Fanconi anemia

Bioengineer by Bioengineer
July 10, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Fanconi anemia is a rare genetic disease characterized by hematologic symptoms that include low platelet count and unusually large red blood cells. Mutations in nearly 20 genes have been identified as causative for Fanconi anemia, all of which encode proteins involved in DNA repair mechanisms. The failure to repair DNA is also considered the source of increased cancer risk in individuals with Fanconi anemia. Ongoing efforts to identify additional genes and pathways linked to this disease may also reveal potential susceptibility genes for hereditary cancers.

This week in the JCI, a team led by Detlev Schindler at the University of Wurzburg describes classical Fanconi anemia-like symptoms in a 12 year-old individual without mutations in any known Fanconi anemia genes. Sequencing of this individual's genome detected missense mutations in both alleles of the gene RFWD3, which encodes an enzyme that helps target other proteins for degradation. This patient's cells were more sensitive to chromosome breakage and showed other indicators of increased susceptibility to DNA damage compared to cells from healthy individuals. Cells lacking RFWD3 or harboring the patient's mutation showed similar DNA repair defects, which were rescued by expression of wild-type RFWD3. Moreover, RFWD3-deficient mice exhibited a phenotype that resembled other mouse models of Fanconi anemia. Together, these findings support the identification of RFWD3 as a Fanconi anemia gene.

Schindler and collaborators further describe the mechanisms by which RFWD3 mediates DNA repair in two recently-published studies in Molecular Cell and http://dx.doi.org/10.1016/j.molcel.2017.04.021. Future explorations of this enzyme may reveal its importance as a biomarker or therapeutic target in Fanconi anemia, cancer, or other human disease.

###

TITLE: Biallelic mutations in the ubiquitin ligase RFWD3 cause Fanconi anemia

AUTHOR CONTACT: Detlev Schindler University of Wurzburg [email protected]

View this article at: http://www.jci.org/articles/view/92069?key=85a36008596dbac1b621

Media Contact

Elyse Dankoski
[email protected]
@jclinicalinvest

http://www.jci.org

http://dx.doi.org/10.1172/JCI92069

Share12Tweet7Share2ShareShareShare1

Related Posts

BU Study Reveals Neurodegeneration May Start Before CTE in Young Athletes

September 17, 2025
blank

AI Model Predicts Disease Risk Decades Ahead of Time

September 17, 2025

Early Neuron Loss and Inflammation Found in Young Athletes Following Repeated Head Impacts

September 17, 2025

Hidden Risk: Preterm Neonates with High Creatinine

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

BU Study Reveals Neurodegeneration May Start Before CTE in Young Athletes

AI Model Predicts Disease Risk Decades Ahead of Time

Early Neuron Loss and Inflammation Found in Young Athletes Following Repeated Head Impacts

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.