• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Study identifies highly soluble molecules with superior antioxidant benefits for cells

by
July 2, 2024
in Chemistry
Reading Time: 3 mins read
0
Study Identifies Highly Soluble Molecules with Superior Antioxidant Benefits for Cells
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Oxygen is essential for life on Earth, but it also gives rise to free radicals, unstable molecules that can damage cells. Antioxidants are chemical compounds that protect cells by neutralizing free radicals. The quintessential antioxidant is ubiquinone, synthesized within cells. However, this molecule is insoluble in water. José Villalaín, a professor and researcher at Miguel Hernández University of Elche (UMH), is investigating other molecules with similar antioxidant potential but greater solubility and effectiveness.

Study Identifies Highly Soluble Molecules with Superior Antioxidant Benefits for Cells

Credit: Villalaín, J. (2024).

Oxygen is essential for life on Earth, but it also gives rise to free radicals, unstable molecules that can damage cells. Antioxidants are chemical compounds that protect cells by neutralizing free radicals. The quintessential antioxidant is ubiquinone, synthesized within cells. However, this molecule is insoluble in water. José Villalaín, a professor and researcher at Miguel Hernández University of Elche (UMH), is investigating other molecules with similar antioxidant potential but greater solubility and effectiveness.

Initial findings from the study suggest that the molecules under investigation could perform a more comprehensive antioxidant role compared to ubiquinone, which is localized only in certain parts of the membrane. The study focuses on a biomembrane similar to that of mitochondria -a part of all animal cells- and examines the behavior of the molecules idebenone (IDE) and mitoquinone (MTQ).

Ubiquinone is water-insoluble and does not move between membranes without protein transporters. The molecules used in the study are more soluble, can transfer and accumulate, are better absorbed, and can move freely between membranes.

Professor Villalaín explains that free radicals affect the body indirectly. The organism cannot function if cells do not work properly, and free radicals increase that risk. However, these harmful compounds are constantly being produced, and cells have mechanisms to control their formation. Antioxidants help maintain free radicals at a minimum level. Controlling the formation of these damaging compounds can help prevent, in certain cases, some degenerative diseases.

Professor Villalaín, who works at the Institute of Research, Development, and Innovation in Health Biotechnology (IDiBE) at UMH, adds that locating the molecules (IDE and MTQ) in different zones and at varying depths of the biological membrane helps reduce free radical production. He emphasizes that the goal is not to replace ubiquinone but to complement it with other antioxidants that function at different membrane levels.

The study was conducted using molecular dynamics, a “virtual simulation” process requiring significant computing power, necessitating a cluster of computers for the experiment. These simulations determined the location and interaction of the studied molecules, both in their oxidized and reduced forms, in a membrane similar to that of mitochondria. For such research, UMH utilizes a scientific computing cluster, a network of high-speed interconnected computers managed by the Innovation and Technological Planning Service.

The study has been published in the journal Free Radical Biology and Medicine and received partial funding from the Research Program for Aging of the International Center for Research on Aging of the Valencian Community, ICAR, 2023 Call.



Journal

Free Radical Biology and Medicine

DOI

10.1016/j.freeradbiomed.2024.06.017

Method of Research

Computational simulation/modeling

Subject of Research

Not applicable

Article Title

Location and interaction of idebenone and mitoquinone in a membrane similar to the inner mitochondrial membrane. Comparison with ubiquinone 10

Article Publication Date

20-Jun-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

McGill Study Identifies Montreal Snow Dumps and Inactive Landfills as Significant Methane Emitters

McGill Study Identifies Montreal Snow Dumps and Inactive Landfills as Significant Methane Emitters

October 17, 2025
Recursive Enzymatic Network Enables Multitask Molecular Processing

Recursive Enzymatic Network Enables Multitask Molecular Processing

October 17, 2025

How Focus Sharpens Sound Processing: The Brain’s Path to Better Listening

October 17, 2025

Eliminating Uncertainty in Shock Wave Predictions Through Advanced Computational Modeling

October 17, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1261 shares
    Share 504 Tweet 315
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    289 shares
    Share 116 Tweet 72
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    123 shares
    Share 49 Tweet 31
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Restoring Kraak Porcelain Patterns with Generative AI

Sex Differences in Anxiety and Depression Modulation

Exploring Language Switching in Multilingual Autistic Adults

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.