• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Study: Floodplain farm fields benefit juvenile salmon

Bioengineer by Bioengineer
June 12, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Carson Jeffres/UC Davis

A new study offers a beacon of hope for a cease-fire in the Golden State's persistent water wars.

"Floodplain Farm Fields Provide Novel Rearing Habitat for Chinook Salmon," published in the journal PLoS ONE, is based on the work by scientists from nonprofit group California Trout, UC Davis, and the California Department of Water Resources. The study provides further evidence that Central Valley farm fields that remain in active agricultural production can have environmental benefits for the state's salmon populations.

This surprising synergy runs counter to the usual California narrative where conflict over management of water and endangered species is the norm. This is particularly true in the State's Central Valley, where more than 95 percent of former wetlands — critical habitat for native fish populations — have been leveed, drained and developed, primarily for farmland.

FOOD FOR FISH AND PEOPLE

"This study demonstrates that the farm fields that now occupy the floodplain can not only grow food for people during summer, but can also produce food resources and habitat for native fish like salmon in winter," said lead author Jacob Katz of California Trout. "Our work suggests that California does not always need to choose between its farms or its fish. Both can prosper if these new practices are put into effect, mimicking natural patterns on managed lands."

Approximately 10,000 small, hatchery-reared salmon, averaging less than 2 inches and weighing about a gram, were transplanted to a 5-acre field for several weeks between the fall rice harvest and spring planting. A subsample of the fish were tagged uniquely with electronic tags (similar to chips used to ID pets) to allow tracking of individual growth rates, which were among the highest ever recorded in freshwater in California.

"By reconnecting rivers to floodplainlike habitat in strategic places around the Central Valley, we have the potential to help recover endangered salmon and other imperiled fish populations to self-sustaining levels," said Ted Sommer, lead scientist for the California Department of Water Resources and a co-author on the study.

RICE FIELDS AS FLOODPLAINS

Since 2012, a team of scientists has been examining how juvenile salmon use off-channel habitats, including off-season rice fields. The experiments provide evidence that rice fields managed as floodplains during winter can create "surrogate" wetland habitat for native fish.

The team suggests that shallowly flooded fields function in similar ways to natural floods that once spread across the floodplain, supplying extremely dense concentrations of zooplankton — an important food for juvenile salmon. Foraging on these abundant and nutritious invertebrates, the young salmon grow extremely quickly, improving their chances of surviving their migration to sea and returning in three to five years as the large, adult fish.

Since this original study, the team has continued to investigate how rice fields and other managed habitats could be improved to support salmon rearing.

"This study shows that we can start focusing on solutions that support fish and people, instead of one or the other," added Carson Jeffres of the UC Davis Center for Watershed Sciences, the second author on the report. "It's a huge win-win."

###

Media Contact

Nina Erlich-Williams
[email protected]
541-230-1973
@ucdavisnews

http://www.ucdavis.edu

Original Source

https://www.ucdavis.edu/news/study-floodplain-farm-fields-benefit-juvenile-salmon

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Non-GMO Yeast Boosts Glutathione via Acrolein Resistance

September 12, 2025
Microemulsions Enhance Resistance in Mycoplasma gallisepticum

Microemulsions Enhance Resistance in Mycoplasma gallisepticum

September 12, 2025

Lumpy Skin Disease: Efficacy of Antibacterial Treatments in Cattle

September 11, 2025

Complete Chloroplast Genome of Cyathea delgadii Revealed

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gastroschisis Rates Shift Pre- and Post-COVID

Non-GMO Yeast Boosts Glutathione via Acrolein Resistance

East Palestine Train Derailment: Chemical Hazard Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.