• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Study first to examine how early memory changes as we age at a cellular level

Bioengineer by Bioengineer
May 16, 2023
in Biology
Reading Time: 4 mins read
0
Parvalbumin interneuron surrounded by the perineuronal net
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

How do our brains become capable of creating specific memories? In one of the first preclinical studies to examine memory development in youth, a research team at The Hospital for Sick Children (SickKids) may have identified a molecular cause for memory changes in early childhood. 

Parvalbumin interneuron surrounded by the perineuronal net

Credit: The Hospital for Sick Children (SickKids)

How do our brains become capable of creating specific memories? In one of the first preclinical studies to examine memory development in youth, a research team at The Hospital for Sick Children (SickKids) may have identified a molecular cause for memory changes in early childhood. 

Event-based memories, also known as episodic memories, are what people traditionally think of when they hear the word memory: a recollection tied to a specific context. For young children, however, memory is more general or “gist”-like, and these general recollections are typically not tied to a specific context.  

In a study published in Science led by Drs. Paul Frankland and Sheena Josselyn, both Senior Scientists in the Neurosciences & Mental Health program at SickKids, the researchers pinpoint the molecular mechanisms underlying the change from gist-like to episodic memory in mice. The team notes that understanding this change, which generally occurs between four and six years old in children, may inform new insights in child development research and conditions which affect the brain, from autism spectrum disorder to concussion. 

“Researchers have studied how episodic memory develops for decades, but thanks to the development of precise cellular interventions we were now able to examine this question at the molecular level for the very first time,” says Frankland, who also holds a Canada Research Chair in Cognitive Neurobiology. 

Growth of perineuronal net may trigger change in memory 

In adults, memory traces (also known as engrams) are made up of 10 to 20 per cent of neurons, but the overall size of these engrams is doubled in young children, with 20 to 40 percent of neurons making up an engram supporting a memory. 

So why the change? The hippocampus, a part of the brain responsible for learning and memory, contains a variety of neurons including a type of inhibitory cell called a parvalbumin-expressing (PV) interneuron. These inhibitory cells constrain the size of the engram and enable memory specificity. The research team identified that as these interneurons mature, memory transitions from general to more specific and engrams are formed at the appropriate size. 

Using viral gene transfer technology developed by Dr. Alexander Dityatev, head of the Molecular Neuroplasticity research group at the German Center for Neurodegenerative Diseases, the researchers decided to delve deeper and explore the reason for this change. They found that as a dense extracellular matrix, known as the perineuronal net, develops around these interneurons in the hippocampus, the interneurons mature, shifting the way our brain creates engrams and stores memories.  

“Once we identified the perineuronal net as a key factor in interneuron maturation, we were able to accelerate the net’s development and create specific episodic, rather than general, memories in juvenile mice,” says Josselyn, who holds a Canada Research Chair in Circuit Basis of Memory.  

Informing new insights into brain function and cognition 

While the team was able to trigger this change in memory type by accelerating the development of the perineuronal net, they also note that the reasons for the age difference between gist-like and episodic memories should not be overlooked. 

“When you think about what purpose memory serves, it makes sense that a child’s memory would function differently from an adult,” explains Adam Ramsaran, a PhD candidate in the Frankland Lab and first author on the study. “At three years old, you don’t need to remember the specifics. A gist-like memory helps children build a large knowledge base which can get more specific as they grow older and have more experiences.” 

Building on these molecular discoveries, the research team sped up the growth of the perineuronal net by providing an enriched environment to allow the formation of specific memories, a finding which is helping to inform child development research underway at SickKids and the University of Toronto. 

“Outside of memory development, we also found similar maturation-type mechanisms involved in different sensory systems of the brain,” says Frankland. “The same brain mechanism may be used by several different brain regions for several different purposes, which presents exciting new opportunities for research and collaboration.”  

This study was funded by Brain Canada, the Canadian Institutes of Health Research (CIHR), University of Toronto, SickKids Research Institute, German Research Foundation, German Center for Neurodegenerative Diseases, National Institutes of Health (NIH), Natural Sciences and Engineering Research Council of Canada (NSERC), Ontario Graduate Scholarship program, Ontario Trillium Scholarship program and the Vector Institute. 



Journal

Science

DOI

10.1126/science.ade6530

Article Title

A shift in the mechanisms controlling hippocampal engram formation during brain maturation

Article Publication Date

4-May-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Cold-Tolerant Germination in Hulless Barley Uncovered!

Cold-Tolerant Germination in Hulless Barley Uncovered!

October 10, 2025
blank

Tuberculosis Fat Boosts Immune Cells, Aids Bacteria

October 10, 2025

Kinsey Institute Research Reveals Long-Term Effects of Restricted Sex Education on Adult Relationships

October 10, 2025

Host-Directed Adjuvant Boosts Antibiotic Effectiveness Against Bacteria

October 10, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1201 shares
    Share 480 Tweet 300
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    96 shares
    Share 38 Tweet 24
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    84 shares
    Share 34 Tweet 21

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tackling Inappropriate Prescribing Cascades for Safer Meds

New Inhibitor 4′-O-methylochnaflavone Targets HSP90AB1 in Cancer

Cold-Tolerant Germination in Hulless Barley Uncovered!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.