• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Study describes new method to remove nickel from contaminated seawater

Bioengineer by Bioengineer
January 11, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The same deposit that builds up in many tea kettles or water pipes in areas where calcium-rich water is the norm might be just the (cheap) ticket to rid contaminated seawater of toxic metals. This is according to a research group led by Charlotte Carré of the University of New Caledonia in the French Pacific territory of New Caledonia and published today in Springer's journal Environmental Chemistry Letters. The researchers dipped electrodes made from galvanized steel into contaminated seawater and ran a weak current through it. Within seven days, up to 24 percent of the nickel it initially contained was trapped in a calcareous build-up of limestone.

Nickel mining activities in New Caledonia itself are causing the subsequent pollution of local coastal waters. The remediation of metals brings considerable challenges since these elements, given their chemical properties, can never be degraded but only stabilized. Therefore Carré's research team set out to find an efficient, rapid and inexpensive method by which to remove such toxic metals from the contaminated waters.

The research team dipped cheap and commercially available galvanized steel electrodes into nickel-enriched seawater, and allowed a fairly weak electric current to run through it for seven days.

According to Carré, the method is relatively inexpensive and easy to use and requires no regular monitoring. "Metal contaminants are attracted and trapped inside a calcareous deposit as long as the structure is connected to a power source," she explains.

After seven days, the calcareous deposits that formed on the electrodes were rinsed off with distilled water, and inspected using optical and Raman spectroscopy methods. The deposits were found to consist of the chemical calcium carbonate (CaCO3) made up of equal proportions of aragonite (one of two naturally occurring, crystal forms of calcium carbonate) and brucite (the mineral form of magnesium hydroxide). The method did not significantly deplete the levels of calcium and magnesium in the water. Importantly, though, up to 24 percent of the nickel initially added to the water was trapped within the build-up in this manner.

"These ratios are quite high after only seven days," says Carré.

After seven days, macroscopic pictures were also taken of the deposit that formed at the surface of the galvanized steel wire. These indicated that the presence of nickel in the solution does not inhibit the formation of the deposit as its thickness remains the same.

"Our findings disclose a new and efficient method, called calcareous electrochemical precipitation, which has potential applications to remove toxic metals from contaminated waters," says Carré, who believes it can be used to salvage metals for possible reuse. "It is even conceivable to reuse the galvanized steel electrodes, and to charge the electric circuit using renewable energy."

###

Reference: Carré, C. et al. (2017). Calcareous electrochemical precipitation, a new method to trap nickel in seawater, Environmental Chemistry Letters. DOI 10.1007/s10311-016-0602-2

Media Contact

Joan Robinson
[email protected]
49-622-148-78130
@SpringerNature

http://www.springer.com

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

February 7, 2026

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

February 7, 2026

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

February 7, 2026

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.