• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Structural uniqueness of the green- and red-light sensing photosensor in cyanobacteria

Bioengineer by Bioengineer
September 6, 2025
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Overview:

Certain cyanobacteria can change the absorbing light colors for photosynthesis using a green- and red-light sensing photosensor protein. A Japanese research group elucidated the molecular structure of RcaE, a representative member of the photosensors. They revealed the unique conformation of the bilin chromophore and the unique protein structure that potentially functions as a proton transfer route to bilin. They also demonstrated that RcaE undergoes protonation and deprotonation of the bilin chromophore during the green and red photoconversion. These results provide insights into how cyanobacteria evolved photosensors with diverse spectral sensitivities and contribute to the development of new photoswitches of gene expression.

Details:

Certain cyanobacteria can utilize both green and red lights for photosynthesis by using their light-harvesting antenna supercomplex called phycobilisome. They can control the absorptive maxima of phycobilisome, which results in remarkable changes in cell color. This phenomenon is regulated by RcaE that belongs to cyanobacteriochrome family of photosensors. RcaE harbors a bilin chromophore and photoconverts green- and red-absorbing states to sense ambient light colors. Although the green and red photoconversion is involved in bilin photoisomerization and subsequent change in bilin protonation state, the structural basis of this photoconversion remains unknown.

The research group demonstrated by molecular dynamic simulations that the water molecules in the cavity were exchanged with the solvent water. They also demonstrated by 15N NMR spectroscopy that four pyrrole nitrogen atoms of bilin are fully protonated in the red-absorbing state, whereas one nitrogen atom is deprotonated in the green-absorbing state. They assume that the unique porous cavity functioned as a proton exit or inlet pathway during the green and red photoconversion. Considering previous study reports on Raman spectroscopy of RcaE, they proposed that bilin deprotonation occurred in the B-ring nitrogen with the C15-Z,anti structure. They are currently working on the crystallization of the green-absorbing state of RcaE to confirm this model.

Elucidating the structure and spectral tuning mechanisms of RcaE provides insights into how cyanobacteria have evolved diverse cyanobacterial subfamilies to acclimate to different light environments. Green and red light-sensing cyanobacteriochromes have been utilized in synthetic biology as sophisticated photoswitches that control gene expression. Amino acid residue modification based on RcaE structure will contribute to the development of new photoswitches with desirable photosensitivities.

###

Reference:

Structural basis of the protochromic green/red photocycle of the chromatic acclimation sensor RcaE.
Nagae T, Unno M, Koizumi T, Miyanoiri Y, Fujisawa T, Masui K, Kamo T, Wada K, Eki T, Ito Y, Hirose Y, Mishima M. Proc Natl Acad Sci U S A. 118(20), e2024583118, (2021) doi: 10.1073/pnas.2024583118.

Media Contact
Yuko Ito
[email protected]

Related Journal Article

http://dx.doi.org/10.1073/pnas.2024583118

Tags: BiochemistryBiologyChemistry/Physics/Materials SciencesMicrobiologyMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Activating Alcohols as Sulfonium Salts for Photocatalysis

November 26, 2025
blank

Carbonate Ions Drive Water Ordering in CO₂ Reduction

November 25, 2025

Isolable Germa-Isonitrile with N≡Ge Triple Bond

November 24, 2025

Fluorescent RNA Switches Detect Point Mutations Rapidly

November 21, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    101 shares
    Share 40 Tweet 25
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    101 shares
    Share 40 Tweet 25

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

EphA10 m6A Modification Fuels Prostate Cancer Progression

Photonic Hybrid Beamforming with Microring Weight Banks

Estimating Key Epidemiological Traits of Scabies

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.