• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Structural uniqueness of the green- and red-light sensing photosensor in cyanobacteria

Bioengineer by Bioengineer
September 6, 2025
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Overview:

Certain cyanobacteria can change the absorbing light colors for photosynthesis using a green- and red-light sensing photosensor protein. A Japanese research group elucidated the molecular structure of RcaE, a representative member of the photosensors. They revealed the unique conformation of the bilin chromophore and the unique protein structure that potentially functions as a proton transfer route to bilin. They also demonstrated that RcaE undergoes protonation and deprotonation of the bilin chromophore during the green and red photoconversion. These results provide insights into how cyanobacteria evolved photosensors with diverse spectral sensitivities and contribute to the development of new photoswitches of gene expression.

Details:

Certain cyanobacteria can utilize both green and red lights for photosynthesis by using their light-harvesting antenna supercomplex called phycobilisome. They can control the absorptive maxima of phycobilisome, which results in remarkable changes in cell color. This phenomenon is regulated by RcaE that belongs to cyanobacteriochrome family of photosensors. RcaE harbors a bilin chromophore and photoconverts green- and red-absorbing states to sense ambient light colors. Although the green and red photoconversion is involved in bilin photoisomerization and subsequent change in bilin protonation state, the structural basis of this photoconversion remains unknown.

The research group demonstrated by molecular dynamic simulations that the water molecules in the cavity were exchanged with the solvent water. They also demonstrated by 15N NMR spectroscopy that four pyrrole nitrogen atoms of bilin are fully protonated in the red-absorbing state, whereas one nitrogen atom is deprotonated in the green-absorbing state. They assume that the unique porous cavity functioned as a proton exit or inlet pathway during the green and red photoconversion. Considering previous study reports on Raman spectroscopy of RcaE, they proposed that bilin deprotonation occurred in the B-ring nitrogen with the C15-Z,anti structure. They are currently working on the crystallization of the green-absorbing state of RcaE to confirm this model.

Elucidating the structure and spectral tuning mechanisms of RcaE provides insights into how cyanobacteria have evolved diverse cyanobacterial subfamilies to acclimate to different light environments. Green and red light-sensing cyanobacteriochromes have been utilized in synthetic biology as sophisticated photoswitches that control gene expression. Amino acid residue modification based on RcaE structure will contribute to the development of new photoswitches with desirable photosensitivities.

###

Reference:

Structural basis of the protochromic green/red photocycle of the chromatic acclimation sensor RcaE.
Nagae T, Unno M, Koizumi T, Miyanoiri Y, Fujisawa T, Masui K, Kamo T, Wada K, Eki T, Ito Y, Hirose Y, Mishima M. Proc Natl Acad Sci U S A. 118(20), e2024583118, (2021) doi: 10.1073/pnas.2024583118.

Media Contact
Yuko Ito
[email protected]

Related Journal Article

http://dx.doi.org/10.1073/pnas.2024583118

Tags: BiochemistryBiologyChemistry/Physics/Materials SciencesMicrobiologyMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Highlights the Promise of Collagen-Based Micro/Nanogels in Medical Applications

New Study Highlights the Promise of Collagen-Based Micro/Nanogels in Medical Applications

September 15, 2025
Stored Charges Power NiOOH-Catalyzed Water Oxidation

Stored Charges Power NiOOH-Catalyzed Water Oxidation

September 15, 2025

Breakthroughs in Exciton-Polariton Research within Perovskite Materials

September 15, 2025

2D X-Ray Imaging Unveils Hidden Processes in CO₂ Electrolyzers

September 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mir-199a-3p Fuels Neuroinflammation in Alzheimer’s Model

Dual pathways, one purpose – unraveling the assembly of the cell division crown

Study Reveals Traditional Herb Enhances Fish Health and Immunity

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.