• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Strongest evidence yet that neutrinos explain how the universe exists

Bioengineer by Bioengineer
April 15, 2020
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: T2K

New data throws more support behind the theory that neutrinos are the reason the universe is dominated by matter.

The current laws of physics do not explain why matter persists over antimatter – why the universe is made of ‘stuff’. Scientists believe equal amounts of matter and antimatter were created at the beginning of the universe, but this would mean they should have wiped each other out, annihilating the universe as it began.

Instead, physicists suggest there must be differences in the way matter and antimatter behave that explain why matter persisted and now dominates the universe. Each particle of matter has an antimatter equivalent, and neutrinos are no different, with an antimatter equivalent called antineutrinos.

They should be exact opposites in their properties and behaviour, which is what makes them annihilate each other on contact.

Now, an international team of researchers that make up the T2K Collaboration, including Imperial College London scientists, have found the strongest evidence yet that neutrinos and antineutrinos behave differently, and therefore may not wipe each other out. The results are published today in Nature.

Dr Patrick Dunne, from the Department of Physics at Imperial, said: “This result brings us closer than ever before to answering the fundamental question of why the matter in our universe exists. If confirmed – at the moment we’re over 95 per cent sure – it will have profound implications for physics and should point the way to a better understanding of how our universe evolved.”

Previously, scientists have found some differences in behaviour between matter and antimatter versions of subatomic particles called quarks, but the differences observed so far do not seem to be large enough to account for the dominance of matter in the universe.

However, T2K’s new result indicates that the differences in the behaviour of neutrinos and antineutrinos appear to be quite large. Neutrinos are fundamental particles but do not interact with normal matter very strongly, such that around 50 trillion neutrinos from the Sun pass through your body every second.

Neutrinos and antineutrinos can come in three ‘flavours’, known as muon, electron and tau. As they travel, they can ‘oscillate’ – changing into a different flavour. The fact that muon neutrinos oscillate into electron neutrinos was first discovered by the T2K experiment in 2013.

To get the new result, the team fired beams of muon neutrinos and antineutrinos from the J-PARC facility at Tokai, Japan, and detected how many electron neutrinos and antineutrinos arrived at the Super-Kamiokande detector 295km away.

They looked for differences in how the neutrinos or antineutrinos changed flavour, finding neutrinos appear to be much more likely to change than antineutrinos.

The available data also strongly discount the possibility that neutrinos and antineutrinos are as just likely as each other to change flavour. Dr Dunne said: “What our result shows is that we’re more than 95 per cent sure that matter neutrinos and antineutrinos behave differently. This is big news in itself; however we do already know of other particles that have matter-antimatter differences that are too small to explain our matter-dominated universe.

“Therefore, measuring the size of the difference is what matters for determining whether neutrinos can answer this fundamental question. Our result today finds that unlike for other particles, the result in neutrinos is compatible with many of the theories explaining the origin of the universe’s matter dominance.”

While the result is the strongest evidence yet that neutrinos and antineutrinos behave differently, the T2K Collaboration is working to reduce any uncertainties and gather more data by upgrading the detectors and beamlines, including the new Hyper-Kamiokande detector to replace the Super-Kamiokande. A new experiment, called DUNE, is also under construction in the US. Imperial is involved in both.

Imperial researchers have been involved in the T2K Collaboration since 2004, starting with conceptual designs on whiteboards and research and development on novel particle detector components that were key to building this experiment, which was finally completed and turned on in 2010.

For the latest result, the team contributed to the statistical analysis of the results and ensuring the signal they observe is real, as well as including the effects of how neutrinos interact with matter, which is one of the largest uncertainties that go into the analysis.

Professor Yoshi Uchida said: “When we started, we knew that seeing signs of differences between neutrinos and antineutrinos in this way was something that could take decades, if they could ever be seen at all, so it is almost like a dream to have our result be celebrated on the cover of Nature this week.”

###

Media Contact
Hayley Dunning
[email protected]

Original Source

https://www.imperial.ac.uk/news/196895/strongest-evidence-that-neutrinos-explain-universe/

Related Journal Article

http://dx.doi.org/10.1038/s41586-020-2177-0

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesParticle Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Quantum Sensors Built to Withstand Extreme Pressures

September 15, 2025
Princeton Chemistry’s Hammes-Schiffer Unveils First-Principles Method for Molecular Polaritons

Princeton Chemistry’s Hammes-Schiffer Unveils First-Principles Method for Molecular Polaritons

September 15, 2025

Smoking or Vaping Could Elevate Your Risk of Developing Diabetes, New Study Finds

September 15, 2025

Metasurface Revolutionizes Atomic Magnetometers with Enhanced Compactness and Sensitivity

September 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Shifts in Infective Endocarditis Demographics: 2012-2021

Assessing Disability: WHO vs. Daily Living Scales

Creating a Sulfur Vacancy Redox Disruptor for Innovative Therapies Targeting Cuproptosis, Ferroptosis, and Apoptosis through Photothermoelectric and Cascade Catalytic Mechanisms

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.