• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Stress may protect — at least in bacteria

Bioengineer.org by Bioengineer.org
January 29, 2018
in Headlines, Health, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: IST Austria

Antibiotics harm bacteria and stress them. Trimethoprim (TMP), an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response. This response also protects the bacterium from subsequent deadly damage from acid. Antibiotics can therefore increase the survival chances of bacteria under certain conditions. This is shown in a study by researchers at the Institute of Science and Technology Austria (IST Austria), carried out by Karin Mitosch, Georg Rieckh and Tobias Bollenbach, which was published in the journal Cell Systems.

Bacteria often encounter harsh environmental conditions: pathogens, for example, have to withstand acidity in the stomach. A specific stress response may help them to survive such stressful conditions. At the same time, the response to a specific stress factor may also protect the bacterium from another stress factor; this is known as cross-protection. In their study, first author and PhD student Karin Mitosch and colleagues investigate whether the stress response to antibiotics can also provide such cross-protection.

Antibiotics, i.e. drugs that kill bacteria or inhibit their growth, can also activate stress response genes. So far, it has been unclear whether this stress response may also protect bacteria against other environmental influences. To investigate this question, the researchers exposed the bacterium Escherichia coli to low concentrations of four different antibiotics. At the same time, they measured how transcription changes across the entire genome of the bacterium in response to the antibiotics. Transcription is the copying of DNA into mRNA, which in turn provides the instructions for protein production.

One of the antibiotics investigated, trimethoprim (TMP), induces a rapid acid stress response, which is very variable from one bacterial cell to another. Those bacterial cells with a strong stress response are better protected from a subsequent acid attack. When the researchers exposed bacterial populations to an extremely acidic hydrochloric acid solution, the bacteria died rapidly: their survival is measured as 'half-life' – similar to the decay of radioactive materials -, and amounts to only about 30 minutes. When the researchers placed the bacterial populations into a solution containing low concentrations of TMP first, and only later into the hydrochloric acid solution, the half-life triples to over 100 minutes.

Mitosch and colleagues elucidated the biochemical mechanism on which this cross-protection is based. TMP leads to a depletion of adenine-nucleotides, an important building block of DNA and energy carrier in the cell. This depletion in turn induces the acid stress response. Karin Mitosch explains the importance of their findings: "We propose a way how to find cross-protection between antibiotics and other stress factors. This is important, as our study gives an example for how antibiotics can influence the survival chances of bacteria in different environmental conditions. If we understand which cross-protections exists, targeted strategies may be developed that enhance the effect of antibiotics in the treatment of diseases."

###

Media Contact

Elisabeth Guggenberger
[email protected]
43-022-439-000-1199
@istaustria

http://Www.ist.ac.at

Share12Tweet7Share2ShareShareShare1

Related Posts

Impact of Moderate Warming on Soil Microbial Decomposition

Impact of Moderate Warming on Soil Microbial Decomposition

August 23, 2025
Inside CNS Solitary Fibrous Tumors: Genetics and Therapies

Inside CNS Solitary Fibrous Tumors: Genetics and Therapies

August 23, 2025

Brain-Delivered Antibody Targets Alpha-Synuclein Aggregates

August 23, 2025

MOF-Enhanced Sn-Doped V2O5 Cathodes for Fast Lithium Storage

August 23, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Moderate Warming on Soil Microbial Decomposition

Inside CNS Solitary Fibrous Tumors: Genetics and Therapies

Brain-Delivered Antibody Targets Alpha-Synuclein Aggregates

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.