• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Strategies for the regeneration of myelin

Bioengineer by Bioengineer
November 4, 2021
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The degradation and regeneration of myelin sheaths characterise neurological disorders such as multiple sclerosis. Cholesterol is an indispensable component of myelin sheaths. The cholesterol for the regenerated myelin sheaths must therefore either be recycled from damaged myelin or produced again locally. In a recent study, scientists at the Max Planck Institute for Experimental Medicine in Göttingen, led by Gesine Saher, found that in the case of chronic damage, unlike in acute damage, hardly any cholesterol is recycled. Instead, the new production of cholesterol determines the efficiency of the repair. Unexpectedly, not only the myelin-forming cells themselves but also nerve cells make an important contribution to regeneration. Cholesterol synthesis in nerve cells ensures the replenishment of newly myelin-forming cells. This could impact the therapeutic success for myelin disorders such as multiple sclerosis.

Impaired repair of chronic lesions in NcKO

Credit: MPI for Experimental Medicine/ Berghoff

The degradation and regeneration of myelin sheaths characterise neurological disorders such as multiple sclerosis. Cholesterol is an indispensable component of myelin sheaths. The cholesterol for the regenerated myelin sheaths must therefore either be recycled from damaged myelin or produced again locally. In a recent study, scientists at the Max Planck Institute for Experimental Medicine in Göttingen, led by Gesine Saher, found that in the case of chronic damage, unlike in acute damage, hardly any cholesterol is recycled. Instead, the new production of cholesterol determines the efficiency of the repair. Unexpectedly, not only the myelin-forming cells themselves but also nerve cells make an important contribution to regeneration. Cholesterol synthesis in nerve cells ensures the replenishment of newly myelin-forming cells. This could impact the therapeutic success for myelin disorders such as multiple sclerosis.

When lesions develop in myelin disorders such as multiple sclerosis, the cholesterol- and lipid-rich insulating layer around the nerve fibres is lost. In order to prevent permanent damage, the now unmyelinated nerve fibres must be protected again as quickly as possible by newly regenerated myelin. In the acute phase of the disorder, defective myelin is abundant. Cholesterol is taken up from defective myelin by phagocytes and reprocessed and made available to the myelin-forming cells. This repair process often proceeds quickly and smoothly in younger patients.

However, the longer the disorder lasts, the less efficient this critical process becomes. Phagocytes of the brain can turn into foam cells that are no longer involved in the recycling of cholesterol. The chronic and repeated degradation of myelin sheaths eventually leaves nerve fibres permanently unmyelinated. Degenerated myelin and cholesterol are thus scarce in chronic lesions. “We suspected that in the low-cholesterol environment of chronic lesions, the production of this important lipid kicks in”, explains lead researcher Gesine Saher from the Max Planck Institute for Experimental Medicine in Göttingen.

Cholesterol from nerve cells promotes the regeneration of myelin-forming cells

Saher and her working group are investigating the role of cholesterol and other lipids in the nervous system under both physiological and pathological conditions. Together with an international team of researchers, they have now investigated which of the body’s own processes contribute to repair after chronic myelin disease.

In their study, the researchers examined nerve cells (neurons) from pharmacological and genetic mouse models with myelin defects. Neurons normally cover the majority of their cholesterol demand by uptake of lipid-rich lipoproteins with only little synthesis. In acute lesions, cholesterol production in nerve cells is even further reduced. “The fact that the neurons from the chronic disorder models boost the production of cholesterol was completely surprising”, reports Stefan Berghoff, former coworker of Gesine Saher and first author of the study.

In order to investigate the relevance of this observation, the researchers genetically inactivated the synthesis of cholesterol in neurons and in the myelin-forming cells (oligodendrocytes) of mice. In the neuronal and oligodendroglial mutants, the regeneration of myelin sheaths was severely reduced in chronic lesions. However, unlike in glial mutants, neuronal cholesterol also enhanced the proliferation of oligodendrocyte progenitor cells. Treatment with a cholesterol-enriched diet had a similarly positive effect on these progenitor cells. “We assume that neurons provide this extra production of cholesterol”, says Berghoff. “This benefits all other cells in chronic lesions, which have greatly reduced their own production of cholesterol”.

Although acute and chronic lesions and their endogenous repair mechanisms differ greatly, the availability and management of cholesterol and other lipids ultimately makes a considerable contribution to the efficiency of regeneration. “The challenge of the next studies will be to develop therapy concepts for patients with myelin disorders in which acute and chronic lesions can be treated simultaneously”, says Saher, leader of the research team.

###



Journal

Cell Reports

DOI

10.1016/j.celrep.2021.109889

Article Title

Neuronal cholesterol synthesis is essential for repair of chronically demyelinated lesions in mice.

Share15Tweet9Share3ShareShareShare2

Related Posts

Impact of Environment on Hornbill Behavior in Zoos

August 30, 2025

circ_0020850: Key Indicator for Stroke Recovery

August 30, 2025

Examining DnaJ Gene Family’s Response to Salt Stress

August 30, 2025

New Single-Cell Atlas Unveils Starlet Anemone Secrets

August 30, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

JARID2 Variant Linked to Female Infertility Issues

Mitochondrial ADP-Ribosylation Controls Heart Sepsis Response

Unveiling PIPC: Risks of Inappropriate Prescription Cascades

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.