• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Stopping Parkinson’s disease before it starts

Bioengineer by Bioengineer
June 5, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A research team led by Osaka University develops a novel gene therapy approach that blocks the accumulation of α-synuclein in the brain, preventing the development of Parkinson’s disease

IMAGE

Credit: Osaka University

Osaka, Japan – An Osaka University-led research team has recently published findings that provide a ray of hope for the millions of Parkinson’s disease (PD) sufferers worldwide. Although more common in those aged over sixty, PD can strike at any age, with an estimated prevalence of 41 per 100,000 people in their forties. And while not fatal in and of itself, the progressive neurodegeneration that is characteristic of PD can often cause secondary effects that lead to death.

The exact cause of PD is still a mystery, but researchers believe that both genetics and the environment are likely to play a part. Importantly though, all PD patients show a loss of dopaminergic neurons in the brain and increased levels of a protein called α-synuclein, which accumulates in Lewy bodies. Lewy bodies are a pathological feature of both familial and sporadic forms of the disease, as well as some types of dementia.

In the study published this month in Scientific Reports, the team led by researchers from Osaka University’s Graduate School of Medicine focused on α-synuclein as a target for a novel PD treatment.

“Although there are drugs that treat the symptoms associated with PD, there is no fundamental treatment to control the onset and progression of the disease,” explains lead author Takuya Uehara. “Therefore, we looked at ways to prevent the expression of α-synuclein and effectively eliminate the physiological cause of PD.”

To do this, the researchers designed short fragments of DNA that are mirror images of sections of the α-synuclein gene product. The constructs were stabilized by the addition of amido-bridging. The resulting fragments, called amido-bridged nucleic acid-modified antisense oligonucleotides (ASOs), bind to their matching mRNA sequence, preventing it from being translated into protein. After screening 50 different ASOs, the researchers settled on a 15-nucleotide sequence that decreased α-synuclein mRNA levels by 81%.

“When we tested the ASO in a mouse model of PD, we found that it was delivered to the brain without the need for chemical carriers,” says co-lead author Chi-Jing Choong. “Further testing showed that the ASO effectively decreased α-synuclein production in the mice and significantly reduced the severity of disease symptoms within 27 days of administration.”

Explains senior author of the study Hideki Mochizuki, “Our results showed that gene therapy using α-synuclein-targeting ASOs is a promising strategy for the control and prevention of PD. We expect that in the future, this method will be used to not only successfully treat PD, but also dementia caused by α-synuclein accumulation.”

###

This work was supported by Japan Agency for Medical Research and Development (AMED) under Grant Number JP17ek0109195.

The article, “Amido-bridged nucleic acid (AmNA)-modified antisense oligonucleotides targeting α-synuclein as a novel therapy for Parkinson’s disease”, was published in Scientific Reports at DOI: 10.1038/s41598-019-43772-9.

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan’s leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan’s most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university’s ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: https://resou.osaka-u.ac.jp/en/top

Media Contact
Saori Obayashi
[email protected]

Original Source

https://resou.osaka-u.ac.jp/en/research/2019/20190521_2

Related Journal Article

http://dx.doi.org/10.1038/s41598-019-43772-9

Tags: AgingBiologyMolecular BiologyParkinson
Share12Tweet8Share2ShareShareShare2

Related Posts

UVB Radiation’s Impact on Catla Catla Spawn

UVB Radiation’s Impact on Catla Catla Spawn

September 24, 2025
blank

Custom Phage Cocktail Targets Enterobacter cloacae Infections

September 24, 2025

Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

September 24, 2025

Celebrating 100 Years Since the Birth of IVF Pioneer Sir Robert Edwards

September 24, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    70 shares
    Share 28 Tweet 18
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12
  • Rapid Spread of Drug-Resistant Fungus Candidozyma auris in European Hospitals Prompts Urgent Warning from ECDC

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Battery Lifespan Prediction via Frequency Domain Interpolation

CNV Analysis Uncovers Causes of Pediatric Epilepsy

Epigenomics Uncover Trained Immunity in Bronchial Cells

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.