• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, January 12, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Stimuli fading away en route to consciousness

Bioengineer.org by Bioengineer.org
January 19, 2018
in Headlines, Health, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: (c) Photo: Christian Burkert

Whether or not we consciously perceive the stimuli projected onto our retina is decided in our brain. A recent study by the University of Bonn shows how some signals dissipate along the processing path to conscious perception. This process begins at rather late stages of signal processing. By contrast, in earlier stages there is hardly any difference in the reaction of neurons to conscious and unconscious stimuli. The paper is published in Current Biology.

The researchers are basing their study on a well-known phenomenon: When presented with two images in rapid succession, humans can only consciously perceive the second one if there is sufficient time between the two presentations. In this study the participants saw a series of pictures on a computer screen, where each image was presented for just over one tenth of a second. Before each series the participants were instructed to pay special attention to two target stimuli, and they were asked if those images were part of the series afterwards.

"We varied the time between the two attended images," explained Dr. Thomas P. Reber, one of the authors. "Sometimes they were presented directly one after the other, and sometimes there was one or even several images between them. Whenever both target stimuli were presented in close succession, participants reported in a little under half of the cases to only have seen the first one. This allowed us to compare conscious and unconscious processing of identical picture presentations."

A look inside the epileptic brain

Reber works in the Department of Epileptology at the University Hospital of Bonn – one of the biggest epilepsy centers in Europe. Among its patients are severe cases of so-called medial temporal lobe epilepsy. A last resort for them can be the removal of brain tissue triggering epileptic seizures. In some cases, electrodes are implanted into the patient's brain to localize the epileptic focus for later resection. As a byproduct, researchers can make use of this circumstance to virtually 'watch' the patients think.

This was also the case during the latest study – the 21 participants were all epilepsy patients with special microelectrodes implanted in the temporal lobe. "That way we were able to measure the reaction of single nerve cells to visual stimuli," explains Dr. Florian Mormann, Professor of Cognitive and Clinical Neurophysiology. "We wanted to investigate how the processing of images differs depending on whether they have been perceived consciously or not."

Seen: Yes. Consciously perceived: No.

When an image is projected onto the retina, the respective information is transmitted along the optic nerve to the so-called visual cortex at the back of the skull. From here the signal branches out and part of it is projected back towards the forehead. The measurements show how the electric impulses change along this pathway. "In the back part of the temporal lobe, where the earlier processing steps take place, there are hardly any differences between consciously and unconsciously processed images", says Dr. Reber. "The distinction of 'conscious' and 'unconscious' follows significantly further down the processing stream than many researchers have been suspecting: On their way to the frontal areas of the temporal lobe, the impulses in response to unconsciously perceived images weaken, and they occur with an increasing delay."

The eye registers an image and generates a corresponding signal. However, in some cases this signal seems to be "disintegrating" before reaching the viewer's consciousness, in this case resulting in the patient not perceiving the image. "It is remarkable," says Reber, "We can show that the patient has been presented with a certain image — even if they have no conscious perception of it." This basic research paper provides new insights on the border between conscious and unconscious perception.

###

Publication: Thomas P. Reber, Jennifer Faber, Johannes Niediek, Jan Boström, Christian E. Elger, Florian Mormann: Single-neuron correlates of conscious perception in the human medial temporal lobe; Current Biology; DOI: 10.1016/j.cub.2017.08.025

Contact:

Prof. Dr. Dr. Florian Mormann
Klinik für Epileptologie
Universitätsklinikum Bonn
Tel. 0228/28715738
eMail: [email protected]

Dr. Thomas Reber
Klinik für Epileptologie
Universitätsklinikum Bonn
Tel. 0228/28715742
eMail: [email protected]

Media Contact

Prof. Dr. Dr. Florian Mormann
[email protected]
49-228-287-15738
@unibonn

http://www.uni-bonn.de

Related Journal Article

http://dx.doi.org/10.1016/j.cub.2017.08.025

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Unveiling Complex Chromosomal Insertions with Karyotyping

January 12, 2026
Enhanced Coherent Ranging via Phase-Multiplied Interferometry

Enhanced Coherent Ranging via Phase-Multiplied Interferometry

January 12, 2026

Adaphostin Triggers Oxidative Stress in Esophageal Cancer

January 12, 2026

Glycoproteins in Colorectal Cancer: Autophagy & Apoptosis

January 12, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    146 shares
    Share 58 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    69 shares
    Share 28 Tweet 17
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unveiling Complex Chromosomal Insertions with Karyotyping

Enhanced Coherent Ranging via Phase-Multiplied Interferometry

Adaphostin Triggers Oxidative Stress in Esophageal Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.