• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Sticking your neck out: How did plesiosaurs swim with such long necks?

Bioengineer by Bioengineer
July 4, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Ms Pernille V Troelsen

When dinosaurs ruled the land, plesiosaurs ruled the oceans. Famous for their incredibly long necks – some of which were up to 7 metres long – plesiosaurs have remained an evolutionary mystery for hundreds of years. Pernille V. Troelsen, a PhD student at Liverpool John Moores University, UK is simulating plesiosaur locomotion with a 3D model to understand how they could swim with such long necks.

"A steady neck would be more hydrodynamic than a bent neck, and due to the pressure on a bent neck, plesiosaurs would probably only bend them when moving at slow speeds or when floating,' says Ms Troelsen.

She reveals that not only increasing the bend in a plesiosaurs neck would have a big effect on the production of 'hydrodynamic drag', but the location of the bending may also play a large role. She adds that plesiosaurs would likely have had a more patient hunting style similar to today's crocodiles and snakes.

"We have some ideas about why they had long necks and they mainly concern feeding strategies, but we still don't fully understand how they moved," explains Ms Troelsen. "These were extremely successful animals that existed for 140 million years, but we don't have any living equivalents to compare with".

Several possible theories suggest that plesiosaurs may have developed long necks to extend their feeding range. By laying immobile on the sea floor or floating at the surface and using their protruding necks to hunt, they may have been able to sneak up on their prey more easily, or simply been more effective at snapping up fast-moving prey.

To test the hydrodynamic effects of different neck bending degrees and locations, Ms Troelsen created a digital 3D model based on a simplified plesiosaur body shape and uses computational fluid dynamics to visualise and determine how bending the neck affects the flow of water around the animal.

To improve these 3D models for in future, Ms Troelsen will be looking at fossil evidence for more information about the shape and bendiness of plesiosaur necks: "Further studies will include digitized neck vertebrae from actual plesiosaurs which will allow us to have an even more realistic approach."

Ms Troelsen believes that these and future results will provide deeper insights into this mysterious group of marine reptiles: "We hope that we can shed some light on the biomechanical implications of having such a long neck and learn more about the lifestyle and evolutionary history of plesiosaurs."

###

Media Contact

Alex Evans
[email protected]
44-752-775-4615

http://www.sebiology.org

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Alfalfa Cystatin Genes: Stress Response Insights

Alfalfa Cystatin Genes: Stress Response Insights

November 3, 2025
Drones and Lichens Team Up to Uncover Dinosaur Bones

Drones and Lichens Team Up to Uncover Dinosaur Bones

November 3, 2025

Risk Assessment of PAHs in Korean Sesame Oil

November 3, 2025

Sex Differences Unveiled in Hamster Hypertension Study

November 3, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

GC-MS Analysis of Khaini’s Tobacco Leaf Varieties

Microbial Metabolites Prevent Urinary Catheter Encrustation

Alfalfa Cystatin Genes: Stress Response Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.