• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Stem cells: new insights for future regenerative medicine approaches

Bioengineer by Bioengineer
October 28, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers discover that a specialized part of the chromosomes, essential for a correct cell division, is smaller and weaker in stem cells, when compared to the ones of differentiated cells.

IMAGE

Credit: © Carolina Pereira & Inês Milagre

Stem cells are considered one of the most promising tools in the field of regenerative medicine because they are a cell type that can give rise to all the cells in our bodies and that has the potential to be used to treat tissue loss due to damage or disease. Stem cells that are similar to the ones of embryonic origin can be generated in the laboratory and they are known as induced stem cells (which can obtained from skin cells, for example). Their induction relies on the reprograming of their gene expression and originates a stem cell from differentiated one, a finding that earned the Nobel Prize in Physiology or Medicine in 2012.

Despite their potential, little is known about the mechanisms that govern the division of stem cells, which have propensity to accumulate chromosome segregation errors during this process. Stem cells can duplicate almost indefinitely and one of the elements necessary for a successful cell division (or mitosis) is the centromere. This is the binding place of the protein complexes that ensure that the genetic material, when duplicated and condensed in chromosomes, is distributed equally between the two daughter-cells.

Driven by the curiosity to understand the mechanisms that govern chromosome segregation in stem cells, the team of researchers from the IGC, led by Raquel Oliveira and Lars Jansen, designed a fundamental biology project with eyes set on centromeres and the protein complexes associated to them.

The study allowed “a precise definition of the composition and size of the centromeres of stem cells and revealed that their chromosomes have weaker centromeres when compared to the ones of differentiated cells. Moreover, these structures become weaker as a consequence of acquiring the identity of stem cell itself”, explains Inês Milagre, main author of the study.

“This ‘weakness’ in a structure of such importance for the correct distribution of chromosomes between daughter-cells might explain why these cells make more mistakes when they divide”, adds Lars Jansen, principal investigator at the IGC and the University of Oxford.

The high tendency for errors during cell division, which originates chromosomal anomalies, is currently one of the biggest limitations to the usage of these cells. “To overcome this limitation we must understand why such mistakes occur. Beyond the important discovery of this study, we are now looking at other structures that are important for cell division in order to have a more holistic vision of all the mitotic machinery of stem cells, so that we can revert their tendency for erroneous divisions”, reveals Raquel Oliveira, principal investigator at IGC.

This study brings new perspectives to the understanding of cell division fidelity and points our possible causes for the presence of anomalies, which can greatly impact the therapies developed in the field of regenerative medicine.

###

Media Contact
Ana Morais
[email protected]

Related Journal Article

http://dx.doi.org/10.1098/rsob.200227

Tags: BiologyCell BiologyDevelopmental/Reproductive BiologyDiagnosticsDisease in the Developing World
Share12Tweet8Share2ShareShareShare2

Related Posts

Synergistic Natural Edible Coatings Enhance Guava Preservation

Synergistic Natural Edible Coatings Enhance Guava Preservation

September 10, 2025
blank

Unraveling Sperm Movement: Discovery of Two Key Proteins Essential for Male Fertility

September 10, 2025

Silicic Acid Enhances Maize Growth Under Drought

September 10, 2025

Global Movement and Annual Cycle in Spoonbills

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    53 shares
    Share 21 Tweet 13
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Single-Cell Atlas Sheds Light on Human Atherosclerosis

Predicting Lithium-Ion Battery Health with Charging Segments

Next-Generation Wearable Pressure Sensors Inspired by Cat Whiskers Deliver Exceptional Sensitivity

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.