• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Stem cell cloning experts unraveling cystic fibrosis

Bioengineer by Bioengineer
May 24, 2022
in Biology
Reading Time: 3 mins read
0
Wa Xian and Frank McKeon in the Department of Biology and Biochemistry and Stem Cell Center at University of Houston
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Two nationally recognized experts in cloning and stem cell science from the University of Houston are taking the first step toward limiting the consequences of chronic inflammation in cystic fibrosis (CF) by identifying the source of this persistent and enigmatic inflammation in CF lungs.  

Wa Xian and Frank McKeon in the Department of Biology and Biochemistry and Stem Cell Center at University of Houston

Credit: University of Houston

Two nationally recognized experts in cloning and stem cell science from the University of Houston are taking the first step toward limiting the consequences of chronic inflammation in cystic fibrosis (CF) by identifying the source of this persistent and enigmatic inflammation in CF lungs.  

Frank McKeon and Wa Xian in the Department of Biology and Biochemistry and the Stem Cell Center at UH have received a $2.7 million grant from the National Heart, Lung, and Blood Institute to examine pro-inflammatory stem cell variants in cystic fibrosis.  

Cystic fibrosis is an inherited and progressive disease that causes long-lasting lung infections and limits the ability to breathe. It is caused by a defect in a gene called the cystic fibrosis transmembrane conductance regulator (CFTR) and affects more than 30,000 people in the United States. That defect instructs the body to produce abnormally sticky and thick mucus that clogs organs, particularly lungs, causing chronic lung disease marked by infections and inflammation.  

While inflammation in the CF lung was always assumed to be a normal response to bacterial infections, recent studies have cast doubt on that link and rendered the source of this inflammation a mystery.  

“That raised the possibility that inflammation, and perhaps other pathogenic features of CF, are maintained by elements that emerge in the disease that are entirely independent of CFTR activity,” said McKeon.  

Interestingly, the same situation may be operating in chronic obstructive pulmonary disease (COPD), where inflammation and disease progression continues despite smoking cessation. In COPD, recent studies reported from the Xian-McKeon lab have shown a strong correlation between the emergence of pro-inflammatory stem cell variants and the disease itself. 

Using technology that clones stem cells from normal lungs, the Xian-McKeon lab found that the COPD lung was dominated by three stem cell variants that drive all the pathology of COPD including inflammation, fibrosis and mucin hypersecretion.    

“Given the known pathological similarities between COPD and cystic fibrosis, we asked whether the cystic fibrosis lung is also dominated by pathogenic stem cells,” said Xian.   “We generated stem cell libraries from four CF lungs that showed not only the three variants seen in COPD but two additional, proinflammatory variants.” 

The team hypothesizes that these CF stem cell variants play key roles in the progression of CF and represent pathogenic elements of this disease triggered by, and yet independent of, the CFTR gene.  

To identify key inflammatory drivers in the three variants, McKeon and Xian will use CRISPR-Cas9 gene editing, which allows them to quickly create cell models.  

“CRISPR-Cas9 genome editing, coupled with our xenograft models, offers a powerful and feasible means of assessing the hierarchy of factors secreted by these three pro-inflammatory stem cell variants found in the CF lung,” said Xian. 

The Xian-McKeon studies come on the cusp of a new class of cystic fibrosis drugs that restore CFTR activity in these patients.   

“The clinical studies suggest the early application of the CFTR modulators will be game-changers for CF, though their impact on advanced lung disease may be more modest,” noted McKeon. 

Foreseeing the need for companion drugs for advanced CF, the Xian-McKeon laboratory is developing small molecule combinations that selectively target the pathogenic stem cell variants in the CF lung, while sparing the normal cells needed for regenerative repair.  

“This is a race against time for patients with CF and other chronic lung diseases, and the targets are now clear,” said Xian. 



Share12Tweet8Share2ShareShareShare2

Related Posts

blank

PhET Interactive Simulations Honored with Meggers Project Award

October 30, 2025
How Protein Binding to Fraying DNA Unlocks the Mystery Behind a Global Illness

How Protein Binding to Fraying DNA Unlocks the Mystery Behind a Global Illness

October 30, 2025

UC Riverside Scientist Honored by American Federation for Aging Research

October 30, 2025

New Study Explores Crucial Hormone in Fertility Preservation for Women with Cancer

October 30, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1292 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

PhET Interactive Simulations Honored with Meggers Project Award

Survival Insights for 2021 WHO Glioma Patients

PFAS Levels Linked in Water and Southern California Adults

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.